Vertical bounce of two vertically aligned balls
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When a tennis ball rests on top of a basketball and both drop to the floor together, the tennis ball is
projected vertically at high speed. A mass-spring model of the impact, as well as air track data,
suggest that the tennis ball should be projected at relatively low speed. Measurements of the forces
on each ball and the bounce of vertically aligned superballs are used to resolve the discrepancy.
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I. INTRODUCTION

A popular demonstration is to drop a basketball on the
floor with a tennis ball on top of the basketball.'™ The tennis
ball bounces off the basketball at surprisingly high speed.
The usual explanation involves two steps. First, the basket-
ball bounces off the floor and reverses direction. Then the
basketball collides with the tennis ball and projects the tennis
ball toward the ceiling. If there is no loss of energy and if the
two balls fall to the floor at speed v, the basketball bounces
at speed v and collides with the incoming tennis ball. Rela-
tive to the basketball, the tennis ball is incident at speed 2v
and bounces off the basketball at a speed of about 2v. But
the basketball is rising at speed v so the tennis ball is pro-
jected vertically at about 3v and bounces to about nine times
the drop height. Given that a tennis ball normally bounces to
about 0.55 of its drop height, it gains about 16 times more
energy by bouncing off the basketball than it does by bounc-
ing off the floor.

This explanation is plausible and is also roughly consistent
with observations. The actual bounce speed is closer to 2v
than 3v due to energy losses. Nevertheless, the usual expla-
nation ignores the facts that the two balls remain in contact
during the collision, and the manner in which the energy is
shared between the two balls depends on their relative stiff-
ness. Furthermore, this explanation is not generally consis-
tent with similar observations. An equivalent experiment was
performed by the author using two masses on an air track.
The two masses can be projected toward the end stop while
in contact with each other, or they can be projected at the
same speed and spaced a short distance apart. The first ar-
rangement simulates the drop of two balls in contact. The
second arrangement simulates the situation commonly used
to explain the result.

An advantage of using an air track with soft springs at-
tached to each mass and to the end stop is that the collision
process is slow enough at low launch speeds to be observed
by eye. An additional advantage is that the relative stiffness
of each pair of springs is a known quantity. They have the
same stiffness. If the masses remain in contact before the
collision, they remain in contact during the collision with the
end stop and then reflect off the end stop at similar speeds,
regardless of the mass ratio. If the masses are incident at the
same speed but are spaced apart, the results are different.’
The mass colliding with the end stop reflects off the stop,
then collides with the second mass, and depending on the
mass ratio, can come to a complete stop. Alternatively, it can
reflect backward off the second mass, reflect off the end stop,
and then collide again with the second mass and come to a
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complete stop. If one of the masses comes to a stop, the other
acquires the total incident energy of the two separate masses.
An experimental and theoretical study of these effects is pre-
sented in the following.

II. COLLISION MODELS

Suppose that masses m; and m, are each headed toward
the end stop of an air track, at speed v as shown in Fig. 1(a).
The masses are not in contact initially. When mass m,; col-
lides with the end stop, it reflects at speed ev, where e is the
coefficient of restitution. For simplicity we assume that e is
the same when m, collides with m,. The collision shown in
Fig. 1(b) results in a change in speed of both masses, as
shown in Fig. 1(c). Using conservation of momentum and
the definition of e, we find that

v, em—(1+e+e’)m,

; (1)

[20)) my+my

vy _ e(2+e)m, my 2)
[20)) my+myp

Figure 2(a) shows v,/v, and v,/v, versus m;/m,. Mass m;
comes to rest with v,;=0 if m;=(1+e+e?)m,/e. This condi-
tion is satisfied closely when m;=3m,, regardless of the
value of e. For example, if e=1, then m;=3m,, and if e
=0.8, then m;=3.05m,. If v;=0 and e=1, then v,=2v,, in-
dicating that all the initial energy is transferred to m,. If
m,>>m,, then v,=e(2+e)v, and v, =ev.

If m; <3m,, then m; bounces backward off m, with v,
<0, as shown in Fig. 1(d). In this case, m; bounces off the
end stop a second time and approaches m, at speed ev;, as
shown in Fig. 1(e). If ev, <v,, there is no further collision.
However, if ev;>uv,, then m; will catch up with m, and
undergo a second collision. The latter situation arises when
m;<m,. The result of the second collision is shown in Fig.
1(f) and is given by

_ (1 +e)myv, + e(emy —my)v,

U3 = 5 (3)
m1+m2
(my — emy)v, —e(1 + e)mqv
vy = 2 1J)U2 LIl )
m1+m2

where v, defined by Eq. (1), is negative. Figure 2(b) shows
the result of the second collision. In this case, m; comes to
rest when m is =0.52m,. The result of additional collisions
between the two masses, which arise if m, is smaller than
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Fig. 1. (a) Two masses headed toward the end stop of an air track at the
same speed v,. (b) Mass m reflects at speed ev, and collides with m,. If
m,>3m,, m, continues to the right at reduced speed v, as in (c); otherwise
it comes to a stop or heads back to the end stop as in (d). The subsequent
behavior is shown in (e) and (f).

about 4m,, can be determined by repeated application of Eqgs.
(3) and (4). Experimental results showing multiple collisions
are described in Sec. IV.

If the two masses (or two balls) remain in contact when
incident at speed v, and also remain in contact during the
collision with the end stop (or the floor), then the situation
can be analyzed by referring to Fig. 3. Mass m; impinges on
the end stop via a linear spring §; of spring constant k;
attached either to m; or to the end stop. The masses m; and
m, are separated by a linear spring S, of spring constant k,
attached either to m, or m; but not to both. Springs S; and S,

o[
C S e=08
BF /v — =1 7
4L _
Y A I L,

0 02 04 06 08 1
(b) m,/m,

Fig. 2. (a) The ratios v,/v, and v,/v, versus m;/m, for ¢=0.8 or 1.0. If
v, <0, m; reflects off the end stop a second time at speed ev,. (b) The ratios
v3/vg and vy, /v, versus m/m, for e=0.8 or 1.0. These solutions apply when
my<m,. If v3<<0, m; reflects off the end stop a third time at speed ev;.
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Fig. 3. If m, remains in contact with the end stop and with m, during the
collision, the collision can be analyzed using connecting springs S; and S,.
The same situation arises when one ball sits on another and both fall to the
floor together. x and y denote the displacements of the two masses.

can compress but they cannot extend. Let x be the coordinate
of the center of mass of m; and y be the coordinate of the
center of mass of m,, in which case the compression of §;
can be equated to x and the compression of S, is y—x. While
the springs remain compressed, the equations of motion are

d*x

my— =Fy=ky(y —x) —kyx, (3)
dt
dzy

m2?=F2=—k2(y—x), (6)

where F, and F, are the forces on each mass. Equations (5)
and (6) can be integrated numerically with initial conditions
y=x=0 and dx/dt=dy/dt=v,. If the masses are incident at
the same speed but separated by a distance d, we can start the
integration with x=0 and y=-d. By varying d, it is possible
to study the continuous transition between the separate (large
d) and the simultaneous (d=0) collision models. We assume
for now that d=0. If at any subsequent time x<<0, then k;
=0. Similarly, if y—x<<0, then k,=0. The integration can be
terminated when k; and k, are both zero, at which time m,
recoils at speed v; and m, recoils at speed v,. However, if
U; >4, then a second collision between m; and m, will oc-
cur, in which case the integration needs to be continued to
determine the outcome.

Solutions of Egs. (5) and (6) are shown in Fig. 4 for two
different values of the stiffness ratio r,=k,/k,. The results in
Fig. 4(a) (with r,=1) are quite different from those in Fig. 2,
even for cases where e=1, and hence where there is no loss
of energy. The results in Fig. 4(b) (with r,=20) are similar to
those in Fig. 2, but not identical. The numerical solutions
were checked to ensure that the total energy was conserved
during and after the collision. The results described here are
consistent with those obtained by Patricio® who used a non-
linear rather than a linear spring model to describe an essen-
tially identical problem regarding collisions between elastic
spheres. The differences between the separate and the simul-
taneous collision models are therefore related to the magni-
tude of r; rather than the nonlinearity of the springs of the
colliding masses.

Given that energy is conserved in both sets of calculations,
we might expect an identical set of results. However, the
manner in which energy is shared between the two masses
depends on the mass ratio r,,=m;/m, and the stiffness ratio,
re=ky/k,. It is only when r;>>1 that the two models of the
collision agree. The solutions in Fig. 4(b) with r,=20 are
therefore approximately the same as those in Fig. 2. When ry
is large, the time scale for a collision between m; and the end
stop is much shorter than that between m; and m,. In effect,
these collisions are two separate events and can therefore be
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Fig. 4. Solutions of Egs. (5) and (6) when (a) k;/k,=1 and (b) k,/k,=20.

approximated as such. Solutions of Egs. (5) and (6) with
r,=2 and r;=20 are shown in Fig. 5 to illustrate this point.
The two separate collisions of m; with the end stop are easily
recognized. In the time r<<5 ms, m; collides with the end
stop and reverses direction while m, continues toward the
end stop with almost no change in speed. In the interval 5
<t<19 ms, there is a slow collision between m; and m,

v, and v, (m/s)

10 15 20 25 30 35 40

t (ms)
Fig. 5. Solutions of Egs. (5) and (6) with m;=0.4 kg, m,=0.2 kg, k=1
X10° Nm™, and k,=5X10° Nm™. During the interval 19 ms<t

<29 ms, m; travels back toward the end stop at constant speed, and m,
travels away from the end stop at constant speed.
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Fig. 6. Rebound speed ratios ¢;=v,/v, (dashed curves) and ¢,=v,/v, (solid
curves) versus the stiffness ratio r; for three values of the mass ratio r,,.

causing both masses to reverse direction. The mass m; makes
a second collision with the end stop after 29 ms, but does not
subsequently catch up to m,.

If k; and k, are similar in magnitude, the collisions of m;
with the end stop and with m, can no longer be described as
separate events. The outcome of any particular collision is
then surprisingly difficult to predict, even for the simplest
case where m|=m,, k;=k,, and vy=1 m/s. If treated as sepa-
rate events, we would expect m, to reflect off the end stop at
1 m/s, then reflect off m, back toward the end stop at 1 m/s,
and then reflect again off the end stop at 1 m/s, while m,
would reflect just once off m; at 1 m/s. If equal masses are
connected by equal springs then m, reflects off m; at
1.19 m/s while m; reflects off the end stop at 0.76 m/s.

Figure 6 shows the rebound speeds of the two masses as a
function of r; for three values of the mass ratio relevant to
the experiments described in Secs. III and IV. When k; and
k, are about equal, both masses rebound at relatively low
speed, regardless of the mass ratio, which is the result when
two masses are incident in contact with each other on an air
track. In order for mass m, to rebound at high speed, r;, needs
to be comparable to or greater than the mass ratio. The latter
result implies that the collision time between m; and the end
stop needs to be smaller than the collision time between m;
and m,. That is, m,/k, <m,/k, (approximately).

When k; and k, are about equal, large differences arise
between the two collision models at large r,,, representing
the expected situation where a tennis ball is on top of a
basketball and both are dropped together to the floor. For
example, we see from Fig. 2 that the tennis ball will bounce
at 2.64v, if m;/m,=10, but the spring model indicates that
the tennis ball should bounce at 1.13v, when r,,=10 and r;
=1. This result suggests that the high speed bounce of a
tennis ball resting on a basketball might be the result of a
physical separation between the two balls as they fall to the
floor. Alternatively, the stiffness between the two balls might
be significantly smaller than the stiffness between the basket-
ball and the floor, or there might be some other effect that
contributes to the high rebound speed of the tennis ball, such
as rapid vibration of the upper surface of the basketball. To
investigate the discrepancy, the result of dropping a basket-
ball and a tennis ball together was examined experimentally,
as described in Sec. III. Additional experiments using two
superballs are described in Sec. IV.
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Fig. 7. Force versus compression measured under static conditions for each
ball separately and with one on top of the other as shown in the inset.

III. BASKETBALL AND TENNIS BALL
EXPERIMENT

A tennis ball of mass 57 g and diameter 66 mm was bal-
anced by hand on top of a small basketball of mass 150 g
and diameter 160 mm and dropped from a height of 0.71 m
onto a hard floor. The impact was filmed and examined
frame by frame. Dropped separately, the basketball bounced
to a height of 0.42 m and the tennis ball bounced to a height
of 0.40 m. Dropped together, the two balls appeared to re-
main in contact before reaching the floor. The basketball
bounced to a height of only about 0.01 m and the tennis ball
bounced to a height of 1.72+0.03 m. The tennis ball was
incident at v(=3.53 m/s as the two balls impacted the floor,
and bounced at v,=5.8 m/s, with a velocity ratio v,/v
=1.64. The two balls were incident with a total energy of
1.29 J. The energy remaining after the collision was 0.96 J.
Dropped side by side rather than one on top of the other, the
energy remaining was 0.84 J. The vertical stacking arrange-
ment was therefore slightly more energy efficient in terms of
the overall energy loss, a result that can be attributed to the
softer impact of the tennis ball. In the same way, a tennis ball
bouncing off the strings of a clamped racquet bounces higher
than off a hard floor, due to the softer impact on the strings.7

The mass ratio in the experiment was m/m,=2.63. The
stiffness of each ball was measured under static conditions
using a materials testing machine, and the results are shown
in Fig. 7. Each test was conducted by compressing the balls
between parallel metal plates. The compression curves are
slightly nonlinear but can approximated by a linear fit to
estimate the impact duration and the force on each ball. At a
compression force of 30 N, the basketball compressed by
18.6 mm, the tennis ball compressed by 2.9 mm, and the two
in series compressed by 27.7 mm. The series compression
was 6.2 mm greater than the combined individual compres-
sions because the tennis ball acted to concentrate the load
force locally at the top of the basketball, resulting in a local
indentation of the basketball as shown by the inset in Fig. 7.
If we assume in the latter case that the bottom of the basket-
ball compressed by 9.3 mm (half the total compression of the
basketball alone) and the tennis ball compressed by 2.9 mm,
then the top of the basketball compressed by 15.5 mm. In
terms of the model shown in Fig. 3, k;/k,=1.8 for this data.

The dynamic values of the ball stiffness in Egs. (5) and (6)
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Fig. 8. Force waveforms measured when a tennis ball is on top of a basket-
ball and when both are dropped to the floor. The piezoelectric P1 on the
floor generates a voltage proportional to force on the bottom of the basket-
ball. The P2 signal is proportional to the force between the two balls.

refer not to static compression but to the displacement of the
center of mass of each ball. Because the displacement of the
center of mass of a ball during a bounce is less than its
overall compression under static loading conditions, the dy-
namic stiffness of a ball is larger than its static value.® For
example, the static stiffness of the tennis ball at F=30 N was
1.03X 10* N m~!. The dynamic stiffness of a ball, k,, can be
estimated from its impact duration 7= mm/ kd.8’9 Foras7 g
tennis ball impacting on a heavy, rigid surface, 7=5.0 ms, so
k;=2.25X10* Nm™'.

Figure 8 shows a qualitative measurement of the forces
acting on the two balls. The two balls were dropped together
onto an 8 mm thick, 50 mm diameter ceramic piezoelectric
disk (P1) attached to a heavy metal plate on the floor. A
0.3 mm thick, 15 mm diameter piezoelectric disk (P2) was
taped to the top of the basketball, with the tennis ball resting
on top of P2. P2 was about 20 times more sensitive than P1
in terms of its output voltage for a given applied force. The
two balls were dropped from a height of about 30 cm. P1
generated a voltage signal proportional to the force on the
bottom of the basketball. P2 generated a signal proportional
to the force between the two balls. The raw signals were not
calibrated, but show that the impact duration was 30 ms,
there is essentially no force between the two balls for the first
7 ms, and the initial impact results in a rapid increase in the
force at the bottom of the basketball. The rapid increase in
the force can be explained in terms of the short time delay
for the bottom of a hollow ball to buckle.” Before that time,
the ball is dynamically very stiff, but after that time the ball
is relatively soft. The P1 waveform indicates that there are
two separate peaks, but this result is spurious and arises from
the fact that the contact diameter of the basketball on the
floor is greater than 50 mm (the diameter of P1). When the
bottom of the basketball buckles, the central part or the con-
tact area rises up off P1.” The P1 waveform is reliable only at
the beginning and end of the bounce while the contact area
remains less than 50 mm.

According to Egs. (1) and (2), a lossless (e=1) basketball
would bounce with v;=0.36 m/s and a lossless tennis ball
would bounce with v,=6.70 m/s when m;/m,=2.63, and
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Fig. 9. A solution of Egs. 5 and 6 approximating the experimental results in
Fig. 8.

v9=3.53 m/s. When =09, v,=033m/s, and v,
=5.70 m/s. Experimentally, v,;=0.44 m/s, and v,=5.8 m/s.
Equations (1) and (2) with ¢=0.9 therefore provide a good
description of the experimental results, despite the fact that
the two balls did not appear to separate as they fell. The
measured impact duration was 30 ms, so the two balls (inci-
dent at 3.53 m/s) would need to be separated by at least
106 mm if the basketball were to collide first with the floor
and then with the tennis ball. In reality, the two balls were
separated by 2 mm at most, so the analysis based on Egs. (1)
and (2) is inappropriate and the good agreement appears to
be fortuitous.

A poor fit to the data in Fig. 8 is obtained with the two-
spring model using the previously mentioned static stiffness
parameters, the problem being that the calculated impact du-
ration would be 39 ms. The dynamic stiffness of at least one
of the balls is therefore larger. A better fit to the data is
obtained using the parameters k;=2500 Nm~' and k,
=1000 N m~". The result of this calculation is shown in Fig.
9. The corresponding rebound speeds are v;=1.34 m/s and
v,=6.37 m/s, both being higher than observed. If energy
losses in the two springs were included in the model, it
would presumably be possible to obtain even better agree-
ment with the experimental data. For example, a plausible
result is obtained by multiplying v, by 0.9, representing the
effective coefficient of restitution between the two balls.

The solution in Fig. 9 shows that there is a delay of about
5 ms before F, begins to increase, in qualitative agreement
with the experimental result in Fig. 8. An alternative fit with
k;=2000 Nm™" and k,=500 Nm™' also gives the desired
30 ms impact duration, and a better result where the basket-
ball bounces to a height of only 19 mm (with v;=0.61 m/s),
but the force F, between the two balls does not drop to zero
until 43 ms due to the low value of k,.

IV. EXPERIMENTS WITH SUPERBALLS

A similar experiment to that described in Sec. III was re-
peated using three superballs to minimize the effects of en-
ergy loss in each ball and to ensure that the contact area of
the ball on P1 did not extend beyond the edge of the disk.
The properties of each ball are listed in Table I. The param-
eter 7 and COR are the impact duration and coefficient of
restitution of each ball dropped from a height of 20 cm onto
P1 mounted on a heavy metal plate, k is the static stiffness
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Table 1. Superball properties. D is the ball diameter, m is the ball mass, and
COR s the coefficient of restitution.

Bal D @mm) m(g) kNm') 7(ms) k,(Nm!) COR
Bl 58 101 4x10* 4.3 5.4%10* 0.78
B2 38 24.8 1.3x10* 2.6 3.6X10* 0.90
B3 26 8.5 1.2x10* 1.9 2.3%x 104 0.90

measured in a materials testing machine, and k, ﬂe dy-
namic stiffness calculated from the relation 7=mVm/k,. The
experimental error in 7 is £0.1 ms. The error in the coeffi-
cient of restitution is +0.02. The error in m is +0.02 g and the
error in k, is £5%.

To a good approximation, the dynamic stiffness of the
three balls is proportional to the ball radius, indicating that
for any given dynamic compression of a ball, the contact
area is proportional to the ball radius (assuming that the
compressed volume is approximately cylindrical). The same
relation is found when two identical steel balls collide. Hes-
sel et al."® report data on the collision times of two steel balls
of diameter 38.1 mm and another two of diameter 27.0 mm.
The ratio of the diameters is 1.411, the ratio of the collision
times was 1.407, and the ratio of the masses was 2.815. The
ratio of the dynamic stiffness values was therefore
2.815/1.4072=1.422, essentially the same as the ratio of the
ball diameters.

In each of the following experiments, two of the balls
were aligned vertically and dropped from a height A, of
about 20 cm. That is, the bottom of the lower ball was about
20 cm above P1. Each bounce was filmed at 25 frames/s
with a video camera for later analysis. A summary of each
experiment is given in Table II in terms of the quantities ¢,
=v,/vy and e,=v,/v,, where v is the common speed of the
two incident balls, v, is the rebound speed of the bottom ball,
and v, is the rebound speed of the top ball. The errors in e;
and e, were +0.02 averaged over three or four ‘“good”
bounces. It was difficult to keep the ball centers perfectly
aligned, especially with the small ball out of view under the
large ball, with the result that the balls did not always bounce
vertically. Bounces that were more than 10" away from the
vertical were disregarded. Also shown in Table II are the
bounce height to drop height ratios £,/ h0=e% and h,/ h0=e§.

With B2 on top of B1, the small ball (B2) bounced 3.65
times higher than the drop height and the large ball bounced
to 8% of its drop height. The force on the bottom of the
larger ball was measured with P1 and the force on the
smaller ball was measured with P2. In this case, P2 was
taped to a 28 mm diameter, 2 mm thick flat disk glued to a

Table II. Values of e; and e,, for each ball pair. Bottom (top) refers to the
bottom (top) ball. The last entry is the result for the tennis ball on top of the
basketball.

Bottom Top (m,) my/my e e hylhg hylhg
B1 B2 4.23 0.28 1.91 0.08 3.65
B2 B1 0.236 0.17 0.84 0.033 0.71
B1 B3 12.3 0.68 2.26 0.46 5.11
B3 Bl 0.081 0.51 0.70 0.26 0.49
B1 B1 1.040 0.76 0.76 0.58 0.58
150 g 57¢g 2.63 0.18 1.64 0.03 2.69
Rod Cross 1013
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Fig. 10. (a) Force waveforms measured with ball B2 on top of B1 and when
both were dropped together. P1 generates a voltage proportional to the force
on the bottom of the bottom ball. The P2 signal is proportional to the force
between the two balls. (b) Result when B1 is on top of B2.

30 mm diameter flat section ground on the larger ball. The
purpose of the latter arrangement was to eliminate any re-
sponse from P2 due to bending. The result of this measure-
ment is shown in Fig. 10(a). The two balls together bounced
with an impact duration of 6.0 ms. When the larger ball was
dropped with the smaller ball underneath, the impact dura-
tion extended to 9.0 ms, as indicated by the results shown in
Fig. 10(b). With the ball positions reversed, the large ball
bounced to 71% of its drop height and the small ball bounced
to only 3.3% of its drop height.

If we assume that the balls undergo separate collisions, a
good fit to the data can be obtained with ¢=0.90. With B2 on
top of B1, Egs. (1) and (2) indicate that B2 should bounce to
3.68 times the drop height and B1 should bounce to 4% of its
drop height. With B1 on top, repeated application of Egs. (3)
and (4) show that there are three collisions between the two
balls before B1 bounces to 59% of the drop height and B2
bounces to essentially zero height. A better fit in the latter
case is obtained with ¢=0.92 in which case there are still
three bounces before the large ball bounces to 71% of the
drop height (as observed) and the small ball bounces to 0.1%
of the drop height.

Figure 10(b) shows the three collisions. The collisions are
qualitatively consistent with there being a physical separa-
tion between the two balls while the small ball bounces up
and down three times between the large ball and P1. In real-
ity, the collisions overlap in Fig. 10(b), indicating that the
small ball is effectively connected by a spring to both the
large ball and P1, the spring being the ball itself. Regardless
of whether the small or large ball was on top, there was a
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Fig. 11. (a) Force waveforms measured when the small superball B3 is on
top of B1 and when both are dropped together. The P2 response from 0 to
2.5 ms and at t>5 ms was also present when B1 was dropped on its own
and is due to vibration of the upper surface of B1. (b) Result when B1 is on
top of B3.

delay of about 2 ms before the two balls made initial contact,
as recorded by P2, indicating that the two balls were sepa-
rated by about 1 mm as they fell.

To investigate further, the experiment was repeated using
B1 and B3, and the results are shown in Fig. 11. The delay in
Fig. 11(a) was also about 2 ms, but the delay in Fig. 11(b)
was about 7 ms. By repeating the drop with the small ball
underneath, it was possible to reduce the delay to 2 ms on
occasion, in which case the last four P2 peaks shown in Fig.
11(b) merged into one broad peak with four small subpeaks.
Figure 11(b) shows that B3 made a total of nine separate
collisions with P1 and with B1, a result that is consistent
with repeated application of Egs. (1)—(4). If ¢=0.88, then B3
makes nine separate collisions before the two balls separate,
with B1 bouncing to 49% of the drop height and B3 bounc-
ing to 28% of the drop height, a result that is in very good
agreement with observations for this pair of balls.

A further check on the bounce behavior was made using
two nominally identical versions of B1. In addition, a 30 mm
length of adhesive copper strip was attached to each ball to
measure the contact resistance. For this purpose, the strip on
each ball was connected by fine wire to a circuit consisting
of a 1.5 V battery and a series resistor. The voltage between
the two strips dropped to zero when the two balls made con-
tact. The results are shown in Fig. 12. Using this technique, it
was discovered that the two balls lost contact as soon as they
were dropped, probably as a direct result of the small force
used to hold them together until they were dropped. Being
elastic, the two balls presumably bounced slightly apart
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Fig. 12. (a) Force waveforms measured using two large superballs. (b) Re-
sult when P2 is replaced by two copper strips to measure the contact resis-
tance between the two balls.

when the force was released. By using only the weight of the
top ball to hold the balls together, it was possible to reduce
the delay to about 1 ms, in which case the two separate P1
peaks merged into one broad peak with two subpeaks, and
the total impact duration shown in Fig. 12 was reduced from
12 to 9 ms.

The result in Fig. 12(a) is described approximately by Egs.
(1) and (2) with ¢=0.88 in which case the lower ball re-
bounds with ¢;=0.75, and the upper ball rebounds with e,
=0.80. In reality, the two balls were observed to rebound at
the same speed, indicating that the coefficient of restitution
of the lower ball was different for collisions with P1 and
with the upper ball, as one would expect. For example, if the
coefficient of restitution for a collision off P1 was 0.76 and
the coefficient of restitution for a collision between the two
balls was 1.0, then the calculated values of ¢; and e, are both
0.76, equal to the values in Table II. The dip in the second P1
peak in Fig. 12(a), together with observation of the video,
indicates that the two balls maintained rolling contact during
the rebound as a result of a slight misalignment of the ball
centers.

V. MASS-SPRING MODEL CALCULATIONS

Two modifications to the simple mass-spring model de-
scribed in Sec. II are required to give a reasonably good
description of the superball results. One is to introduce a
small separation d between the balls as they fall. The other is
to account for energy loss in at least one of the balls. Calcu-
lations are presented in the following for the two cases where
the two small balls were on top of the large ball and where
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Fig. 13. Mass-spring calculation for the B1-B2 combination assuming that
the balls were spaced 1 mm apart as they fell and that the coefficient of
restitution of the B1 ball was 0.78. The experimental result is shown in Fig.
10(a) (where P1 is proportional to F, and P2 is proportional to F,).

hysteresis loss is included in the large ball but not the small
balls. To account for hysteresis, we can assume a linear com-
pression of spring S; with F'=kx, and a nonlinear expansion
with F=kzx" and with k3;x"=k;x at maximum compression.
In that case, the coefficient of restitution for a collision be-
tween the large ball and a rigid surface is given by e’
=2/(n+1). Because ¢=0.78 for the large ball, n=2.3. The
ball separation d and the spring constants k; and k, were then
chosen to provide a best fit to the experimental results.

The results for the B1-B2 combination are shown in Fig.
13. The best fit was obtained with d=1 mm, k;=5.6
X 10* Nm™!, and k,=1.6X10* Nm™! giving ¢;=0.24 and
e,=1.83. The best fit for the B1-B3 combination was ob-
tained with d=2.4 mm, k;=54X 10* Nm~!, and k,=1.4
X 10* N m™!, giving e¢,;=0.56 and e,=2.16. Both sets of cal-
culations are in reasonably good agreement with the experi-
mental results and with the independent measures of dy-
namic stiffness for each ball.

The calculations for cases where the large ball was on top
of a small ball were qualitatively consistent with the experi-
mental results, but no attempt was made to include energy
losses in either ball. The problem here is that each ball un-
dergoes multiple hysteresis cycles, and the nature of the re-
sulting hysteresis curves is not known.

VI. DISCUSSION AND CONCLUSION

All of the experimental results described in this paper are
consistent with an explanation based on the premise that the
two balls undergo separate collisions with the floor or with
each other before separating. The good agreement with the
experimental results is surprising because in most cases, and
especially when a tennis ball and basketball are dropped to-
gether, this premise is false. Because the impact duration for
the basketball collision was 30 ms, a 2 or 3 ms delay in the
arrival of the tennis ball means that the two balls maintain
close contact throughout most of the collision. The delay
could even have been as long as 7 ms in Fig. 8, in which
case the two balls maintained contact for at least 23 ms while
the basketball was still on the floor. The basketball did not
bounce off the floor and then collide with the tennis ball, as
is usually assumed. The same can generally be said of the
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superball collisions, although two cases were observed [Figs.
11(b) and 12] where the arrival of the upper ball was suffi-
ciently delayed that the lower ball bounced off the floor be-
fore colliding with the upper ball.

In the three cases studied with a small ball on top of a
large ball, reasonably good fits to the data could also be
obtained using the simultaneous collision model, provided
that energy loss was included in the calculations and the
dynamic stiffness between the two balls was 2.5 to 3.9 times
smaller than the stiffness between the lower ball and the rigid
surface on which it bounced. The latter result was unex-
pected but is an essential part of the explanation of the origi-
nal discrepancy. For the case of colliding masses on an air
track, the dynamic stiffness between the two masses is the
same as that between the end stop and the mass colliding
with it. For a tennis ball on top of a basketball, the tennis ball
was much stiffer than the basketball, but it deformed the top
of the basketball in such a way that the static stiffness be-
tween the two balls was 1.8 times smaller than that at the
bottom of the ball. The dynamic stiffness was estimated as
being 2.5 times smaller, a result that suggests that the top of
a basketball might indent slightly when it impacts on the
floor. The dynamic stiffness ratio for superball collisions was
found to be about 3.7, a result that can be partially attributed
to the difference in the diameters of the two balls, small balls
being softer than large balls by the ratio of their diameters. In

addition, the stiffness between two balls is smaller than ei-
ther ball because the two balls are in series elastically.
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