Differences between bouncing balls, springs, and rods
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When one hard steel ball collides with another, kinetic energy is conserved, even if the balls have
different diameters. Why is kinetic energy conserved in such a collision, given that kinetic energy
is not conserved when two unequal length steel springs or rods collide? Experimental results with
bouncing balls, springs, and rods are presented, which reveal the answer. For colliding springs and
rods a significant fraction of the initial kinetic energy is retained after the collision as vibrational
energy in the longer spring and rod. When two hard balls collide, a negligible fraction of the initial
energy is converted to vibrational energy because the collision time is much longer than the transit
time of an acoustic wave across each ball due to the fact that the contact region of a hard spherical
ball is much softer than the rest of the ball. © 2008 American Association of Physics Teachers.

[DOLI: 10.1119/1.2948778]

I. INTRODUCTION

If a compression spring is dropped onto a floor so that it
impacts vertically on one end, the spring bounces off the
floor in a manner that appears to be similar to that of a
spherical ball. The only difference to the eye is that a spring
tends to twist and turn after it bounces because it is difficult
to align the spring so that the normal reaction force passes
through its center of mass. However, there is a surprising
difference in the nature of the force exerted on the floor.
When a ball bounces, the force increases to a maximum and
then decreases to zero in a way that can be described ap-
proximately by the first half cycle of a sinusoidal waveform.
The force waveform might be slightly bell shaped and might
be slightly asymmetrical, depending on the type of ball, but
the force rises to a maximum value when the compression of
the ball is near its maximum value. These results indicate
that a bouncing ball behaves like a rigid mass attached to the
top end of a massless and slightly nonlinear spring. When a
compression spring bounces, the force rises rapidly to a cer-
tain value, remains constant at that value for a relatively long
time, and then drops rapidly to zero as the spring loses con-
tact with the floor. The bottom end of a spring therefore
remains compressed by a fixed amount throughout most of
the bounce.

The dynamic propert1es of springs have been investigated
in considerable detail,'™ although little information on the
force actmg on a bouncing spring seems to be avallable
There is a close analogy between springs and rods,”” be-
cause both_support compressional waves that propagate at
speed v=V\E/ p:L\rW, where E is Young’s modulus, p is
the mass density, L is the length, k is the stiffness, and m is
the mass of the spring or rod. The duration of an end-on
collision between two springs or two long rods is determined
by the time taken for a compression wave to propagate from
one end of the longer spring or rod to the other and then back
again. * The duration of the bounce of a spring or a long rod
dropped onto a heavy, rigid surface is also determined by the
round trip propagation time. When a short rod or a ball is
dropped onto the surface, the impact duration can be much
longer than the transit time of a compression wave along the
rod or across the ball, typically by a factor of 10 or more for
a steel ball.

A coil spring has its mass and stiffness distributed uni-
formly along its length. A spherical ball has a different dis-
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tribution of mass and stiffness along the bounce axis. Why
does this distribution have such a strong influence on the
behavior of the ball? To investigate the differences several
experiments were undertaken to compare the bounce proper-
ties of springs and rods with those of a solid ball, and the
results were modeled by treating each system as a mass-
spring chain. 191" The model was used to investigate head-on
collisions between two springs and between two elastic balls.
It is known that kinetic energy 1s not conserved when the two
springs are of unequal length ® It is therefore surprising that
kinetic energy is almost conserved when the two balls have
different diameters. It is shown that both results are consis-
tent with a mass-spring chain model, provided that appropri-
ate mass and stiffness distributions are used to model each
system.

II. BOUNCING SPRING EXPERIMENT

The impact force acting on two compression springs was
measured by dropping them from a height of 50 cm onto a
50-mm-diam, 8-mm-thick, ceramic piezoelectric disk. The
disk was mounted centrally on the end face of an 8.3 kg
copper cylinder. The output voltage from a piezo disk is
linearly proportional to the force on the disk. An external
20 nF capacitor connected in parallel with the disk was used
to extend the time constant to 200 ms when the output volt-
age was measured with a 10 M) resistance voltage probe.
The voltage signal was recorded with a 1 MHz bandwidth
digital storage oscilloscope. A constant force applied to a
piezo disk generates a charge that decays exponentially with
time when it is measured with a voltage probe. An accurate
force measurement is possible only when the force is applied
for a time much less than the time constant, although a cor-
rection can be made to take the discharge time constant into
account.

Spring A had mass m=0.145 kg, length L=0.18 m, and
stiffness k=9100 N/m. It was constructed as a 19 turn coil
using 3.4-mm-diam steel wire. Spring B had mass of
0.0618 kg, length 0.30 m, and a stiffness of 30.1 N/m.
Spring B was constructed as a 39 turn coil using
1.2-mm-diam steel wire. The impact duration of spring A
was 8.0 ms, and the impact duration of spring B was 90 ms,
cons1stent with the fact that the compressional wave speed
L\k/m was 44.8 m/s for spring A and 6.6 m/s for spring B.
The long duration of the impact for spring B made it possible
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Fig. 1. Force waveforms observed by dropping two springs from a height of 50 cm onto a piezo disk. Spring B wobbled slightly as it bounced, giving a noisier

force waveform.

to observe the compression of the spring by filming a bounce
with a video camera. A camera operating at 25 or
30 frames/s would have sufficed, but a 100 frames/s camera
was used and several identical bounces were filmed to cap-
ture the bounce at intervals less than 10 ms apart.

The observed force waveforms for the two springs are
shown in Fig. 1. Both force waveforms show evidence of
small amplitude, dispersive transverse waves propagating
along each spring. This evidence can be seen in the form of
small amplitude, high frequency components in the force
waveforms, extending up to about 1 kHz. This effect was not
investigated in detail but the result is presumably due to
transient bending or buckling events occurring during the
compression of each spring. The main interest is that the
force on each spring remains essentially constant in time,
although there is a peak in the force, for both springs A and
B, at the beginning and end of the bounce. The measured
force waveform for spring B decreased in time, with a time
constant of about 200 ms, and then reversed sign at the end
of the impact period. Both effects are spurious, resulting
from the 200 ms discharge time constant of the measuring
circuit. The observed result is consistent with the compres-
sion force on the spring remaining essentially constant in
time and then decreasing to zero at the end of the impact
period. An analogous result would be obtained if a square
wave signal were applied to a series RC circuit with a time
constant of 200 ms and the voltage were measured across the
resistor.

The qualitative behavior of spring B as observed on the
video is indicated in Fig. 2. The behavior of a spring as it
falls through the air is also of interest and has been described
previously.l’2 When the top end of a long spring is released,
the bottom end of the spring does not move until the com-
pression wave generated at the top arrives at the bottom. It
might be expected that the bottom end would start to fall as
soon as the top end is released. A similar effect, in reverse,
occurs when the spring bounces off the floor. The bottom end
compresses while the top end continues to fall at its initial
incident speed. Meanwhile, a compression wave travels up
the spring, bringing successive turns of the spring to rest
until the entire spring comes to rest. The compression wave
then reflects off the top end causing the top end to expand.
As the expansion wave travels back down the spring, succes-
sive turns expand until the whole spring bounces off the
floor.

Each spring was incident at speed v=3.13 m/s and came
to rest after one transit time, 7. Because the momentum de-
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creased to zero at an approximately uniform rate, the force
on spring A can be estimated as mv/T=113.5 N, and the
force on spring B as 4.3 N, in reasonably good agreement
with the observed results.

II1. BOUNCING BALL EXPERIMENTS

When a steel ball bounces off a steel anvil or collides with
another steel ball, the collision time is typically much longer
than the time for a pressure wave to propagate across the
ball. For example, the impact duration of two 38-mm-diam
steel balls colliding at 1 m/s is about 115 ,us.l2 The speed of
sound in steel is 5100 m/s. Hence, a compressional wave
would take only 14.9 us to travel across two ball diameters,
and travels about 15 times across each ball during the im-
pact. Steel balls and steel springs therefore bounce in a very
different manner.

To compare the bounce of a ball with the bounce of a
spring, several measurements were made using a solid syn-
thetic rubber ball. The ball had a diameter of 60 mm and a
mass m=0.074 kg. The ball was dropped onto the piezo disk
from a height of 50 cm. The result is shown in Fig. 3. The
output signal from the piezo was calibrated from the ob-
served change in the velocity of the ball, using the relation
JFdt=m(v,+v,), where v, is the incident speed and v, is the
rebound speed. The ball has a coefficient of restitution
U,/v1=0.83*0.01. The result shown in Fig. 3 is typical of
all spherical balls in that the force waveform can be repre-
sented approximately by the first half cycle of a sinusoidal
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Fig. 2. Behavior of spring B as observed by capturing several identical
bounces at 100 frames/s in order to show the spring compression at 15 ms
intervals.
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Fig. 3. The force F on a rubber ball and the displacement x of its center of
mass when dropped from a height of 50 cm.

waveform.'? The ball compression was not measured, but the
force waveform can be integrated twice to calculate the dis-
placement of the ball center of mass. The result is also shown
in Fig. 3, indicating that the ball bounced while it was still
slightly compressed.

To analyze the behavior of the ball, estimates were made
of its mass and stiffness distributions along the bounce axis.
The mass distribution of a solid spherical ball is easily cal-
culated, but the stiffness distribution is difficult to calculate
and was measured instead. An identical rubber ball was cut
into five parallel slices, each 12 mm thick, and the stiffness
of each slice (defined as the load force divided by the com-
pression measured in a direction perpendicular to the flat
surfaces) was measured in a materials testing machine. The
five slices are labeled as shown in Fig. 4. The mass of each
slice is given by m;=ms=0.104M, m,=m,=0.248M and
m3=0.296M, where M is the total ball mass.

The force versus compression curves for the top three
slices are shown in Fig. 5. The end slices were much softer
than the other slices because the cross-sectional area reduces
to zero on one side of each slice. If each slice were a cylin-
drical disk of area A and thickness b, then its stiffness would
be given by k=FEA/b. In theory the stiffness of each end slice
is zero when the compression is zero because the contact
area would be zero. Small compressions of the end slice can
be described by the relation F =kx*>2, where x is the
c:ompression,14 in which case the stiffness F/x of the slice is
proportional to x!/2. However, the stiffness increases more
rapidly with x for large compressions. For example, if a thin
cylindrical disk is compressed in half, and if the area doubles
to maintain the same volume (rubber being incompressible),
then the stiffness would increase by a factor of 4. Each disk
was compressed by about 4 mm and its stiffness increased
by a factor of about 2 or 3 depending on the slice.

Fig. 4. Five equal thickness segments cut from the rubber ball. The center
slice is about three times heavier and stiffer than the end slices.
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Fig. 5. The measured load force versus the compression x for three of the
ball slices, as labeled in Fig. 4. The dots are data points and the straight lines
are best fit power laws.

Unlike a simple spring, the stiffness of a rubber (or a steel)
ball is a nonlinear function of its compression. The nonlin-
earity results in a decrease in the impact duration as the
incident ball speed increases, because the ball becomes
stiffer as its compression increases. The stiffness results in a
slightly bell-shaped impact force waveform, but its form has
no special significance in terms of the qualitative behavior of
the ball. For a 4 mm compression the average stiffness of the
central slice was 10% larger than the adjacent slices and
three times larger than the end slices.

The stiffness ratio of each element depends on the total
compression of the ball. For a very small compression, the
contact area of the end slice (of mass ms) might be less than
1 mm?, while the end slice and its neighbor maintain contact
over a much larger area. At low ball speeds the impact du-
ration of a ball will therefore be extended as a result of the
relative softness of the end slice, in which case the compres-
sional wave generated in the ball can make many transits
across a ball diameter during the impact. The latter situation
arises in a low speed bounce of a steel ball. As will be
shown, the rubber ball bounced after about three such tran-
sits under the conditions shown in Fig. 3. At lower incident
speeds, the rubber ball bounced after several more transits of
the compression wave across the ball.

IV. BOUNCING ROD EXPERIMENTS

Aluminum rods of diameter 6.0 and 20.0 mm and various
lengths were dropped end-on onto the piezo disk from a
height of about 1 cm to measure the impact duration and
force waveforms. The bottom end of each rod was rounded
with a radius of half the rod diameter to ensure that the rod
bounced centrally rather than on an edge and to provide a
valid comparison between the different rods. The impact du-
ration is sensitive to the shape and stiffness of the impact
end. For example, when the bottom end of a short rod was
tapered to a sharp point, the impact duration increased by a
factor of about 3, and the impact force decreased by a similar
factor, due to the relative softness of the point under com-
pression. Repeated impacts on the pointed end reduced the
impact duration and increased the impact force due to the
flattening of the initially sharp point. This fact alone shows
that the impact force and impact duration of a short rod and
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Fig. 6. Force waveforms observed when four aluminum rods were dropped
onto the piezo disk, showing the transition from ball-like to spring-like
behavior as the rod length increases.

a ball is determined primarily by the stiffness of the contact
region rather than by the stiffness of the rod or the ball as a
whole. At least, that is the case for a low speed impact. In a
high speed impact, a ball might squash in half, in which case
the contact region could extend to the center of the ball or
beyond.

Results for four such rods are shown in Fig. 6. The
5-cm-long, 6-mm-diam rod had an impact duration of about
50 ws and excited a small amplitude, high frequency vibra-
tion of the piezo disk after the impact. The speed of sound in
aluminum is 5100 m/s, the same as in steel. During the
50 ws impact there was sufficient time for a compressional
wave to make five transits up and down the rod. In that
respect short rods bounce in a manner similar to a ball. The
normal reaction force varies sinusoidally for one half cycle,
as it does during the bounce of a ball. The 5-cm-long,
20-mm-diam rod bounced in a similar manner, but the im-
pact duration was longer than that for the 6-mm-diam rod,
despite the fact that the transit time for a compressional wave
along each rod was the same. The force waveform for the
20-mm-diam rod was almost identical to that observed for a
30-mm-diam steel ball with the same 130 us impact dura-
tion. The impact duration of the steel ball on the ceramic
piezo was slightly longer than that on a steel plate because
the ceramic was slightly softer.

The longest 6-mm-diam rod was 1.1 m. Its impact dura-
tion was 460 us, slightly longer than the 431 us transit time
for a compressional wave to propagate up the rod and to
reflect back to the bottom end. The normal reaction force for
this rod remained approximately constant for most of the
bounce period, as it did for a spring. The force waveform for
the 20-cm-long rod began to plateau after about 80 us, but
dropped quickly to zero on arrival of the expansion wave
reflected from the top end.

The rod results shown in Fig. 6 are similar to those ob-
tained in Ref. 5 using steel rods, and show the changing
behavior with rod length and diameter and the relevance to
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Fig. 7. A chain of five masses and springs incident on a heavy block.

bouncing balls and springs more clearly. The analysis and
discussion in Ref. 5 remains relevant, especially that con-
cerning the rise time of the initial compression and the fast
fall time at the end of the impact. An alternative analysis is
presented in Sec. V based on the mass-spring chain model
commonly used to explain the behavior of a cr§stal lattice
and to describe the behavior of Newton’s cradle.*”'*

Another experiment was undertaken by dropping a
1.2-m-long, 12-mm-diam, 96 g wood dowel onto the piezo.
The force waveform was similar to that in Fig. 6(d), and the
impact duration was 650 us, indicating that the speed of
sound in the dowel was about 3000 m/s; the first 150 us and
the last 100 us of the force waveform corresponds to the rise
and fall times of the pressure wave in the rod. The purpose of
this experiment was to examine the effect of adding a soft,
cylindrical rubber tip to the impact end of the rod. The tip
was cut from a standard pencil eraser, was 12 mm in diam-
eter, 5 mm thick, and had a mass of 1.6 g. The result was an
increase in the impact duration by a factor of about 5, to
3.3 ms, the force waveform being a half cycle sinusoid. We
conclude that a long rod bounces like a spring, the impact
duration depending primarily on the speed of sound in the
rod, and a long rod with a soft tip bounces like a ball with the
impact duration depending on the stiffness of the tip and the
mass of the rod.

V. BOUNCE MODEL

The bounce of a ball or a spring or rod can be modeled
using a discrete chain of masses and springs. The accuracy of
the model improves with the number of elements in the
chain. A chain of five masses and five springs was used for
the calculations presented in the following, corresponding to
the number of elements of the ball whose properties were
measured. The chain model is shown in Fig. 7. The gravita-
tional force plays only a minor role during the bounce pro-
cess and is not included in the calculations. The chain is
incident in the x direction at speed v; when it impacts on a
heavy, rigid block. The mass of each element is denoted by
m;, and x; represents the change in its x coordinate after the
chain first makes contact with the block. The equation of
motion for each element has the form

dle-

mi? =F; - Fyg,

(1)
where F; is the force in the positive x direction arising from
the compression x,_;—x; of the spring to the left of the mass
and Fy is the force in the negative x direction arising from
the compression x;—x;,; of the spring to the right of the
mass. The force acting on the block is given by ksxs for a
spring obeying Hooke’s law.

For a uniform spring or rod of mass m and stiffness k, the
mass of each element in the chain can be taken as m;=m/5,
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Fig. 8. Numerical solutions of Eq. (1) for four mass-spring chains incident at 3.13 m/s on a rigid surface, showing the compression of each of the five springs
in the chain, denoted by ¢;—cs. The impact force waveform is the same as the c¢5 waveform, because F=kscs. The compression values c,c, are all magnified

by a factor of 5 in (c) and (d).

the stiffness of each element can be taken as k;=5k, and the
force law for each element is given by Hooke’s law. The
results described in Sec. III for a spherical ball were used to
determine the mass and stiffness of each element. Each ex-
perimental result presented in this paper was modeled by a
separate chain model, giving good fits to the force wave-
forms. We present in Fig. 8 a different set of solutions to
show the effects of varying the mass and stiffness of the five
chain elements in a more systematic manner. Figure 8 shows
the results for four mass and stiffness distributions. In each
case the compression of each element in the chain is shown
as a function of time, assuming that the chain was dropped
from a height of 50 cm and impacted a rigid surface at a
speed of 3.13 m/s.

Each of the results in Fig. 8 was calculated for a chain of
mass m=0.1 kg. In Figs. 8(a)-8(c) the mass of each element
was the same (0.02 kg); in Fig. 8(d) the mass distribution
was taken to be that of a sphere, with m;=ms=0.0104 kg,
m,=my;=0.0248 kg, and m;=0.0296 kg. In Fig. 8(a) the
stiffness of each element was the same with k;=2
% 103 N/m. The result in Fig. 8(a) is therefore representative
of a uniform spring or a long rod. In Fig. 8(b) the element in
contact with the rigid surface was taken to be four times
softer than the other elements, with ks=5X 10* N/m; the
other four elements had the same stiffness as in Fig. 8(a).
The result in Fig. 8(b) is representative of a medium length
rod because the rise time of the pressure disturbance in the
rod is about equal to the transit time of the compressional
wave along the rod. The only change of the chain shown in
Fig. 8(c) compared to Fig. 8(b) is a further reduction in the
stiffness of the contact element to ks=2 X 10* N/m. The re-
sult in Fig. 8(c) is representative of a short rod, where the
rise time of the pressure disturbance is longer than the propa-
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gation time along the rod. Figure 8(d) is similar to Fig. 8(c),
having the same stiffness distribution, but the mass distribu-
tion was changed to represent a solid spherical ball. The
stiffness distribution in Fig. 8(d) approximates that found for
the rubber ball, given that the remote element, m;, is com-
pressed dynamically on its flat side rather than on its curved
end and is therefore similar in stiffness to its adjacent ele-
ment.

VI. EXPLANATION OF MASS-SPRING CHAIN
SOLUTIONS

Because only five elements were included in the model,
the numerical solutions in Fig. 8 do not accurately represent
the observed force waveforms, but the qualitative agreement
is very good. The main features and their relevance to the
experimental results are explained as follows:

A. Results for a uniform spring or a long rod [Fig. 8(a)]

The numerical solution in Fig. 8(a) shows that the force
arising from a uniform mass-spring chain remains almost
constant in time after an initial rise time determined by the
mass and stiffness of the element in contact with the surface.
If the element in contact with the surface behaves as an iso-
lated system, then the mass ms would come to rest when the
initial kinetic energy of mjs is transferred to the fifth spring in
the chain, in which case the compression of the fifth spring
would be given by cs=x5=v;Vms/ks=0.99 mm. Maximum
compression of the fifth spring would occur at time ¢
=0.57Vms/ks=0.50 ms. These results are close to those
found by the numerical solution for the whole chain because
the compression of the fourth element in the chain is rela-
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tively small when the fifth element comes to rest. Similarly,
when the fourth element comes to rest, the compression of
the third element is relatively small. Each element in the
chain therefore behaves in a somewhat isolated manner as it
compresses, and each mass element comes to rest in an or-
dered sequence. After coming to rest, each element is pre-
vented from expanding by an approximately equal and op-
posite force exerted by the adjacent element.

The propagation of a compressional wave through the
chain is in the form of a time delay between the compression
of one spring and the next, and the expansion wave can also
be seen clearly from the corresponding time delays for the
subsequent expansion of each spring. The compression of
each element in the spring is similar, with the result that each
element comes to rest in turn and remains at rest until the
arrival of the wave reflected from the opposite end.

The impact duration for a uniform spring or long rod im-
pacting on a heavy block is equal to 2\m/k, which is twice
the transit time of a compressional wave along the spring or
rod. The impact duration for the chain in Fig. 8(a) (with
m=0.1 kg and k=4 X 10* N/m) should therefore be 3.16 ms.
The impact duration is found to be =3.6 ms due to the finite
rise and fall time of the compression wave at the beginning
and end of the impact. If the result in Fig. 8(a) is scaled by an
appropriate factor, then Fig. 8(a) provides a good fit to the
experimental data in Figs. 1 and 6(d).

B. Results for a medium length rod [see Fig. 8(b)]

The numerical result in Fig. 8(b) provides a good model
for the experimental data in Fig. 6(c) when the time axis is
scaled appropriately. If ms and ks behave as an isolated sys-
tem, then ms; would come to rest after a time
t=0.5m\Vms/ks=0.99 ms and the compression c¢5 would be
1.98 mm. However, the fifth element contains a spring that is
four times softer than the other springs, so ms comes to rest
only when the compression cs is at least four times greater
than c¢,. Nevertheless, a compression wave can be seen
propagating from the impact end of the chain to the other
end, and is then reflected back as an expansion wave. The
expansion wave arrives at the impact end after about 3 ms,
bringing ms to rest and then reversing its direction of motion.

C. Results for a short rod and spherical ball [Figs. 8(c)
and 8(d)]

The results in Figs. 8(c) and 8(d) can be understood by
regarding each five-element chain as a single mass-spring
system with stiffness k=2 10* N/m and ‘mass m=0.1 kg.
The impact duration of such a system is 77\m/k=7.0 ms and
the maximum compression is vlv’mle mm, both values
being close to those calculated for the complete five-element
chain. In Figs. 8(c) and 8(d) the chain is semirigid, given that
all mass elements are connected by springs that are ten times
stiffer than the contact spring. In the limit where all five
masses are connected by rigid rods the chain would behave
as a single, rigid mass connected to a single, soft spring. The
change in the mass distribution from Fig. 8(c) to Fig. 8(d)
therefore makes little difference to the resulting impact force
or duration. The significance of the latter result in relation to
the bounce of a ball is that it is the stiffness distribution of a
spherical ball that distinguishes it from a simple spring,
rather than its mass distribution.
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D. Impact duration

The propagation speed of the compression wave in the
four cases shown in Fig. 8 is approximately the same be-
cause the stiffness of four of the five elements was held
constant and because the mass of each element was the same
apart from the change noted in Fig. 8(d). In all four cases c,
began to increase about 1 ms after the initial impact, and ¢,
reached its maximum value at about t=2 ms. The expansion
wave returned to the impact end of the chain at about
t=3 ms, causing the whole chain to bounce off the surface at
t=3.6 ms in Fig. 8(a). The impact duration was longer in the
other three cases due to the slower compression and the
slower expansion at the impact end of the chain. As a result
the compressional wave in Figs. 8(c) and 8(d) made about
four transits up and down the chain during the impact, expe-
riencing only partial reflection off each end of the chain.

The parameters in Figs. 8(b)-8(d) are approximately the
same as those for the rubber ball described in Sec. III, result-
ing in an impact duration and maximum compression similar
to those shown in Fig. 3. It can be deduced that the compres-
sional wave in the rubber ball made three or four transits
across the ball during the bounce. In Fig. 3 the ball was
dropped from a height of 50 cm and the impact duration was
5.9 ms. When dropped from a height of 1 mm the impact
time of the rubber ball extended to 12 ms due to the decrease
in stiffness at the impact end of the ball, in which case the
compressional wave in the ball made about 8 transits across
the ball during the impact. A more realistic model of the ball
would therefore require a nonlinear spring at the impact end,
but there would be no need to include more than two ele-
ments in the mass-spring chain.

E. Coefficient of restitution

An interesting observation arising from Fig. 8(d) is that
94% of the elastic energy stored in the chain is stored in the
element in contact with the surface, a result that is easily
verified by summing O.Skici2 over the five elements, the total
being equal to the incident kinetic energy of the ball, 0.49 J.
Consequently, most of the energy lost in the rubber ball is
likely to be dissipated in the contact region of the ball. A
similar result cannot be assumed for all balls, especially if
the coefficient of restitution is relatively high, as it is for
steel balls. Some of the elastic energy stored in each chain
shown in Fig. 8 is dissipated as vibrational energy through-
out the chain. No specific energy loss dissipation mechanism
was included in the model, but the coefficient of restitution
for each chain varied from 0.975 in Figs. 8(a) and 8(b) to
0.996 in Figs. 8(c) and 8(d), indicating that a small amount
of vibrational energy was retained in each chain after it
bounced off the surface. The coefficient of restitution was
calculated as the ratio of the center of mass speed after the
collision to that before the collision.

VII. COLLIDING BALLS AND COLLIDING
SPRINGS

If a light steel ball collides head-on with a heavy steel ball,
and if the heavy ball is initially at rest, then the light ball will
bounce backward and both balls will move off in opposite
directions with very little loss in kinetic energy. Auerbach®
analyzed an analogous problem involving the longitudinal
collision of two steel rods. He found that the results were
dramatically different to those observed with steel balls. If a
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short rod of length L; collides with a stationary rod of length
L,>L,, then the short rod comes to rest regardless of the
mass or length of the longer rod. Because momentum is con-
served, the long rod moves off with a fraction L/L, of the
initial energy. The coefficient of restitution for the collision
is given by L;/L, when L,>L,. Auerbach® explained the
loss of energy in terms of the vibrational energy stored in the
longer rod after the collision, concluding that the conserva-
tion of kinetic energy in a collision between two steel balls
of different mass is mysterious. Bayman provided an analo-
gous solution for the end-on collision between two springs
and also had difficulty explaining why kinetic energy should
be conserved in a collision between two steel balls of differ-
ent diameters.

The collision between two uniform springs can be ana-
lyzed by a simple extension of the model described in Sec. V
by replacing the heavy block by an initially stationary, five-
element spring. The numerical solution for a collision be-
tween spring A (mass m=0.145 kg, length L=0.18 m, and
stiffness k=9100 N/m) and the block resulted in an impact
duration of 8.7 ms with a coefficient of restitution of 0.97.
When colliding with an identical spring, the numerical solu-
tion resulted in an impact duration of 9.0 ms and a coeffi-
cient of restitution of 0.92. For a collision with a five-
element spring of twice the mass and half the stiffness (to
simulate a spring with L,/L,=2), the numerical solution re-
sulted in an impact of duration 9.0 ms and a coefficient of
restitution of 0.54. In both cases the velocity of the incident
spring was negligible after the collision. Apart from small
errors introduced by including only five elements to model
each spring, the numerical results are consistent with the
analytical solutions in Refs. 6 and 4.

The collision between two balls can also be modeled in
the same manner as the collision between two five-element
springs. The total mass of each ball can be taken to be pro-
portional to its radius cubed and the stlffness of each ball can
taken to be proportional to its radius.'” A simpler approach
would be to model each ball as single element mass and
spring because that is the result found for the five element
chain in Fig. 8(d). This approach can be justified on the basis
that a negligible fraction of the stored elastic energy in a
bouncing ball is retained as vibrational energy even when the
compression wave in the ball propagates across the ball a
noninteger number of times during the bounce period. When
a bouncing or colliding ball compresses, it does so by storing
most of its elastic energy in the contact region and very little
energy propagates away from the contact region as a com-
pression wave. As shown in Figs. 8(b)-8(d), the amplitude of
the compression wave is much smaller than the compression
of the contact region, and the energy content in the compres-
sion wave is also very small. A similar result would be ob-
tained by striking a steel ball or a steel rod with a rubber
hammer rather than a steel hammer because the impact du-
ration would be too long to excite any high frequency mode
in the ball or the rod. The frequency spectrum of an impact
of duration T extends to about 1.5/7 but no longer than that.
Consequently, when one ball collides with another, only a
small fraction of the initial energy is converted to acoustic
waves in the two balls, leaving the possibility that kinetic
energy will be conserved if both balls are highly elastic.

Our interpretation of the collision events is consistent with
previous calculations regarding the generation of acoustic
waves when an elastic sphere collides with a heavy, elastlc
block. It has been shown theoretically by several authors 18.19
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that only a small fraction of the initial kinetic energy is trans-
ferred to the block as a result of wave generation in the
block. For example, when a small ball bearing is dropped on
a thick sheet of glass, the coefficient of restitution is about
0.985, a result that is consistent with the generation of acous-
tic waves in the glass.19

VIII. CONCLUSIONS

The bounce properties of various balls, springs, and rods
were measured and found to be qualitatively consistent with
a simple mass-spring chain model in all cases. The impact
duration of a spring (or a long rod) bouncing off a heavy,
rigid surface or off another spring (or rod) depends on the
propagation time of a compression wave from the impact
point to the other end and back again. The impact force on
the spring or the rod remains approximately constant in time.

The impact duration of a medium length rod is longer than
the return trip of a compression wave along the rod because
the pressure disturbance at the impact end has a rise and a
fall time that is comparable with the transit time of the com-
pression wave. The impact duration of a short rod or a
spherical ball or a long rod with a soft tip is determined by
the mass of the rod or ball and by the stiffness of the impact
region. The impact duration, 7, is much longer than the tran-
sit time 7 of a compression wave along the rod or across the
ball. Each object behaves like a single mass at the end of a
spring, and the impact force varies in a sinusoidal manner for
one half cycle of oscillation. The vibrational energy remain-
ing after the collision is generally negligible because the im-
pact duration is too long to excite any high frequency modes
in the object. The frequency spectrum of the impact force
waveform extends from zero to about 1.5/T and does not
extend to 1/7, and hence even the fundamental vibration
mode is suppressed. Consequently, steel balls of unequal di-
ameter conserve kinetic energy when they collide, but
springs or long rods of unequal length do not.
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Geissler Tube Rotator. This motor was designed to rotate elaborately-shaped discharge tubes in a demonstration that
passed the line between physics and art. It is listed in the 1916 catalogue of the L.E. Knott Apparatus Co. of Boston
as being used “for rotating Geissler Tubes to increase the spectacular effect. Our Rotator consists of a practical motor
(not a toy) constructed after designs of the expensive commercial types. It is ... provided with appropriate binding
posts, one pair for battery or other current and one pair for induction coil or Influence Machine. The Geissler tube is
attached to the holder, which may be firmly fixed to the spindle of the rotator.” For battery power it cost $12.00, and
models for 110 volts D.C. and 110 volts A.C. were $13.25. The motor is at St. Mary’s College in Notre Dame, Indiana.
(Photograph and Notes by Thomas B. Greenslade, Jr., Kenyon College)
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