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A simple model is presented to explain how the spin of a ball can be enhanced when the ball is
incident obliquely on a flexible surface. The mechanism involves tangential distortion of the surface
and a return of the elastic energy stored in the surface via the action of the static friction force on
the ball. As an example, we consider the enhancement of the spin that is possible using an
appropriate type of tennis racquet string. © 2010 American Association of Physics Teachers.
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I. INTRODUCTION

We consider the motion of a ball bouncing obliquely off a
flexible surface. Examples include a billiard ball bouncing
off the rubber cushion of a billiard table and the bounce of a
tennis ball off the strings of a tennis racquet. The rebound
speed of the ball in a direction perpendicular to the surface
depends on the coefficient of restitution ey, which is the ratio
of the normal component of the rebound speed to the normal
component of the incident speed. The coefficient of restitu-
tion varies between 0 and 1 and is a measure of the kinetic
energy lost during the collision. If there is no loss of kinetic
energy, then ey =1. Experiments show that ey can exceed 1
for an oblique impact if the surface deforms in such a way as
to redirect the ball closer to the normal.1,2 Similarly, a tennis
ball bouncing off a clay court can be deflected upward by the
mound of clay pushed ahead of the ball, with the result that
ey is increased when the ball is incident at glancing angles.3

The rebound speed of the ball in a direction parallel to the
surface is more difficult to calculate, as is the spin of the ball.
There are two regimes of interest. If the ball is incident at a
glancing angle, it can slide across the surface for the entire
impact duration. In that case, the main parameters determin-
ing the change in the tangential speed and the change in spin
are the angle of incidence and the coefficient of sliding fric-
tion. If the ball is incident at angles close to the normal, or
even at angles up to about 50° away from the normal, the
ball will slide for only a short time interval and then grip the
surface. In the latter case the change in the tangential speed
of the ball and in its spin can be characterized in terms of the
tangential coefficient of restitution ex, which is a measure of
the loss of energy resulting from distortion of the ball and the
impact surface in a direction parallel to the impact surface.4,5

The mechanism by which spin is imparted to an obliquely
bouncing ball is not obvious. The change in ball spin can be
attributed directly to the torque arising from the friction be-
tween the ball and the surface, but the nature and origin of
the friction force are not easy to understand. Measurements
show that the friction force can change direction during the
bounce and can even reverse direction several times.5 The
reversal in the direction of the friction force results from the
fact that the ball grips the surface during the bounce, in
which case sliding friction gives way to static friction. The
magnitude and direction of the static friction force depend on
the magnitude and direction of the elastic distortion of the
ball and the surface in a direction parallel to the impact sur-
face.

Tennis players would like to generate as much spin as

possible for certain shots and are interested in knowing what

716 Am. J. Phys. 78 �7�, July 2010 http://aapt.org/ajp
type of string is best for this objective. The physics of these
shots suggests that the best type of string is one that can store
and return elastic energy as a result of string movement in a
direction parallel to the string plane. Strings with a rough
texture exert a large sliding friction force on the ball but do
not return to their original position after the impact is over
due to the large grip force between overlapping strings. Low
friction strings tend to spring back immediately to their origi-
nal position.3

To investigate the effect of string motion and any other
elastically deformable surface, we consider the oblique im-
pact of a ball on a surface that is allowed to move in a
tangential direction. To simplify the problem, it is assumed
that the surface itself is rigid, and that elastic energy is stored
in an external spring connected to the surface.

II. SIMPLIFIED MODEL OF STRING MOTION

A simplified model of the interaction between a tennis ball
and the strings of a racquet is shown in Fig. 1. A ball of mass
m and radius r is incident obliquely at angle �1 on a cart of
mass M that can translate freely in the x direction, but which
is attached to a rigid wall via a spring having a spring con-
stant k. The normal reaction force N on the ball is assumed to
vary with time according to the relation N=N0 sin��t /T�,
over the time interval 0� t�T, where T is the impact dura-
tion. If the ball is incident without spin, or with backspin, it
will commence to slide on the upper surface of the cart and
experience a horizontal friction force F=�N in the negative
x direction, where � is the coefficient of sliding friction. The
cart will experience an equal and opposite friction force in
the positive x direction. During the sliding phase of the
bounce, the horizontal velocity vx of the center of mass of
the ball will change according to the relation mdvx /dt=−F,
and hence

vx = vx1 −
�N0T

m�
�1 − cos

�t

T
� , �1�

where vx1 is the initial horizontal speed of the ball. As indi-
cated in Fig. 1, subscript 1 is used to describe ball parameters
before the bounce, subscript 2 is used to describe ball param-
eters after the bounce, and vx and � describe, respectively,
the x component of the ball’s velocity and its angular veloc-
ity during the bounce. The angular velocity changes accord-
ing to the relation Fr= Icmd� /dt, where Icm is the moment of
inertia of the ball about an axis through its center of mass.

Hence,
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� = �1 +
�N0Tr

�Icm
�1 − cos

�t

T
� , �2�

where �1 is the initial angular velocity of the ball. A point at
the bottom of the ball moves in the x direction with velocity
vp=vx−r�. The equation of motion of the cart during the
sliding phase of the bounce is given by

M
d2X

dt2 = �N0 sin��t/T� − kX , �3�

where X is the horizontal displacement of the cart from its
initial position. Equation �3� can be solved analytically or
numerically to find the velocity V=dX /dt of the cart. During
the bounce, vx decreases with time, � increases �in the clock-
wise direction in Fig. 1�, vp decreases, and V increases �as-
suming that V=0 at t=0�. If the ball is incident at a glancing
angle, it will slide throughout the bounce and will bounce
with vp�V at the end of the impact.

Of greater interest are cases where �1 is sufficiently large
that the bottom of the ball comes to rest relative to the cart at
some stage during the bounce, and then vp=V at that instant.
If we assume that F does not change discontinuously at this
time, then vp would become less than V, and hence the di-
rection of the friction force would reverse, which is incon-
sistent with the assumption that F does not change discon-
tinuously. Alternatively, if we assume that the ball
commenced rolling with F=0, then there would be no further
change in vp, but V would decrease due to the force exerted
by the spring, in which case the ball will immediately start
sliding on the cart and F will change to a nonzero value.
Consequently, F must change discontinuously to a value that
allows vp to remain equal to V. The ball will continue to
rotate, but the bottom of the ball will remain at rest with
respect to the cart. The ball and the cart will then engage like
two gears, allowing the ball to spin faster than it would if it
simply rolled on a stationary surface.6 The latter condition
can be maintained provided that the required static friction
force Fs remains less than �N; otherwise, the ball will start
sliding again.

While vp=V, dvx /dt−rd� /dt=dV /dt, and thus

−
Fs

m
−

Fsr
2

Icm
=

Fs − kX

M
, �4�

vp = vx - r �

F

F

vx

�

IN OUT

V

�1

vx1

vy1

�2

vy2

vx2

Fig. 1. A ball incident obliquely from the left on the cart causes the cart to
move to the right. If elastic energy stored in the spring is returned to the ball
by the action of the friction force, the ball will rebound with increased spin.
and hence
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Fs =
mkX

M�1 + m/M + mr2/Icm�
. �5�

The static friction force is linearly proportional to the restor-
ing force of the spring and reverses direction when the re-
storing force reverses direction. The static friction acting on
the ball acts to change its speed and spin according to the
relations mdvx /dt=−Fs and Fsr= Icmd� /dt.

The equation of motion of the cart during the grip phase of
the bounce is

d2X

dt2 = − Fs� 1

m
+

r2

Icm
� = −

kX

M + m�/�1 + ��
, �6�

where we have expressed Icm in the form Icm=�mr2. For a
tennis ball, �=0.55.5 The cart therefore undergoes simple
harmonic motion during the grip phase at a frequency deter-
mined by the stiffness of the spring and the mass of the cart
plus a fraction of the mass of the ball. The cart and the ball
do not translate as a rigid body of total mass M +m during
the grip phase. Rather, the bottom of the ball translates at the
same speed as the cart, while the center of the ball translates
at a different speed �as indicated in Fig. 1�.

Near the end of the impact the normal reaction force on
the ball drops to zero, and the ball may no longer be able to
maintain a firm grip on the cart. If the static friction force
given by Eq. �5� exceeds �N, the ball will recommence slid-
ing on the cart. There is no instantaneous change in the mag-
nitude or direction of the friction force if the ball starts slid-
ing again, but the friction force is then proportional to the
normal reaction force rather than the displacement of the
cart. However, if the cart returns to its original position at the
end of the bounce period so that Fs approaches zero as N
approaches zero, then the second sliding phase can be
avoided.

III. RESULTS OF MODEL CALCULATIONS

Results are presented in this section for a tennis ball with
mass of m=57 g and radius of r=33 mm incident at speed
of v1=10 m /s at various angles on a cart with a coefficient
of sliding friction of �=0.4, which is a typical value of � for
a tennis ball sliding on smooth tennis strings. Two values of
the incident ball spin are considered, �1=0 and �1=
−100 rad /s. A ball incident with backspin slides for a longer
period of time than a ball incident without spin because the
friction force first acts to reduce the spin to zero and then
reverses the direction of spin. It is assumed, for simplicity,
that the ball rebounds with ey =1, in which case the peak
normal force is given by N0=�mvy1 /T, where vy1
=v1 sin �1. T is taken to be 5 ms for the following calcula-
tions. Numerical solutions of Eqs. �1�–�6� were obtained by
first solving Eq. �3� during the initial sliding stage of the
bounce. The solution is continued until either the ball
bounces or grips the surface. If the ball grips, then Eq. �6� is
used instead of Eq. �3� to determine the subsequent motion
of the cart and the ball. The solution is again continued until
either the ball bounces or recommences sliding, in which
case the final stage of the bounce is determined by solving
Eq. �3�.

The critical angle of incidence at which the ball stops slid-
ing and grips the cart can be calculated analytically for an

infinitely heavy cart where the grip condition is given by
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vx2=r�2, where �2 is the angular velocity of the ball after it
bounces. In this case, we find from Eqs. �1� and �2� that

tan �1 =
�1 − r�1/vx1�
2��1 + 1/��

. �7�

For a light cart, the sliding condition can be maintained over
a slightly larger range of incident angles if, as in Fig. 2, the
cart is moving backward by the time the ball bounces. Figure
2 shows the rebound ball spin �2 versus �1 for a spring of
stiffness k=4�104 N /m connected to either a heavy cart
�M =10 kg� or a light cart �M =10 g�. Also shown is the
result when the 10 g cart is connected to a softer spring, with
k=1.5�104 N /m. At glancing angles of incidence, the re-
bound speed, spin, and angle are independent of the mass of
the cart and the stiffness of the spring because the ball slides
throughout the impact. If �1=0, the ball slides throughout
the bounce when �1�23.9° for all three conditions shown in
Fig. 2�a�. The sliding condition persists up to �1=26.6° with
the softer spring. If �1=−100 rad /s, the ball slides through-
out the bounce when �1�31.0° �as indicated by Eq. �7�� and
at slightly higher angles with the softer spring. In the pure
sliding case, the bounce parameters are determined by the
coefficient of sliding friction and the angle of incidence.

From Eq. �2�, the rebound spin at glancing angles is given
by

�2 = �1 +
2�v1 sin �1

�r
. �8�

For the parameters used to calculate the results in Fig. 2,
�2=�1+440.8 sin �1. When �1=0 and �1=23.9°,
�2=178.6 rad /s. For the heavy cart, this value is the maxi-
mum spin of the ball because �2 decreases as the angle of
incidence increases above 23.9°. If the ball is incident with
backspin, the angle of incidence can be increased in an at-
tempt to increase the spin, but the resulting ball spin remains
less than that for a ball incident without spin, as shown in
Fig. 2�b�.

At large angles of incidence, where the ball grips the cart,
the bounce parameters depend not only on the angle of inci-
dence but also on the mass of the cart and the spring stiff-
ness. For a heavy cart, the outgoing ball spin decreases as the
angle of incidence increases, and it decreases to zero at nor-
mal incidence. A significant increase in spin can result if the
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Fig. 2. Rebound spin �2 versus �1 for a ball incident at 10 m/s on a heavy c
Results are shown for cases where �a� �1=0 and �b� �1=−100 rad /s.
mass of the cart is less than the mass of the ball and if the
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period of oscillation of the cart-spring system is comparable
to the impact duration of the ball. At angles of incidence
where �1�60°, the rebound spin is larger when �1=0 than
when �1=−100 rad /s. However, when �1�60°, the re-
bound spin for the 10 g cart can be larger when
�1=−100 rad /s than when �1=0, depending on the spring
stiffness. The latter result can be attributed to the fact that the
ball slides for a longer time when it is incident with back-
spin, with the result that more elastic energy is stored in the
spring. A surprising conclusion is that it may be easier, rather
than more difficult, for a tennis player to return a ball with
topspin if the incoming ball is spinning backward. Normally,
a ball bounces off the court with topspin. However, the ball
is then spinning backward relative to the receiver’s racquet,
meaning that the receiver needs to reverse the spin direction
to return the ball with topspin.3

Figure 3 shows the friction force acting on the ball at the
angle of incidence of 60° for the three cases shown in Fig.
2�b�. When incident on the 10 kg cart, the ball slides for 2.25
ms and then grips the cart, at which time the force drops
almost to zero. The motion of the ball then becomes essen-
tially a rolling mode and bounces with r�2 /vx2=0.992. The
displacement of the cart is very small in this case, and the
energy stored in the spring is negligible. A significantly
larger displacement of the cart results when the mass of the
cart is smaller than the mass of the ball. In Fig. 3�b� the cart
reaches a forward speed of 3.2 m/s at 1.7 ms, at which time
the ball grips the cart and the force drops from 109 to 90 N.
The cart then undergoes simple harmonic motion, resulting
in a reversal of the friction force at a time when the displace-
ment of the cart is zero �as indicated by Eq. �5��. As a result
of the reversal of F, � decreases with time. The cart has a
maximum positive displacement of 4.4 mm at t=2.3 ms in
Fig. 3�b�. Near the end of the bounce, the ball recommences
sliding.

In Fig. 3�c� the cart reaches a maximum forward speed of
5.0 m/s at 1.34 ms, at which time the ball grips the cart. The
cart undergoes simple harmonic motion at a lower frequency
than that in Fig. 3�b� due to the softer spring and has a
maximum displacement of 7.7 mm at 3.1 ms. The friction
force drops to zero at the end of the bounce period because
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art �M
the cart returns to its original position at that time. As a
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result, the time-integrated force on the ball is larger than that
in Fig. 3�b� and the ball rebounds with greater spin, as shown
in Fig. 2.

Even larger spins can be achieved by reducing the mass of
the cart below 10 g and by adjusting the stiffness of the
spring so that the oscillation period of the cart matches the
duration of the impact, as in Fig. 3�c�. For example, the
maximum ball spin using the 10 g cart is 162.8 rad/s when
�1=60°, �1=−100 rad /s, and k=1.5�104 N /m. For the

-100

-50

0

50

100

150

200

-0.05

0

0.05

0.1

0 1 2 3 4 5

F
(N
)
a
n
d
�
(r
a
d
/s
)

x
(m
m
)

t(ms)

F

�

x

F

�

(a) M = 10 kg k = 40 kN/m

µ = 0.4

�
1
= - 100 rad/s

�
1
= 60

0

-100

-50

0

50

100

150

200

-5

0

5

10

0 1 2 3 4 5

F
(N
)
a
n
d
�
(r
a
d
/s
)

x
(m
m
)

t(ms)

F

�

x

F

�
(b) M = 10 g k = 40 kN/m

µ = 0.4

�
1
= - 100 rad/s

�
1
= 60

0

-100

-50

0

50

100

150

200

-5

0

5

10

0 1 2 3 4 5

F
(N
)
a
n
d
�
(r
a
d
/s
)

x
(m
m
)

t(ms)

F

�

x

F

(c) M = 10 g k = 15 kN/m

µ = 0.4

�
1
= - 100 rad/s

�
1
= 60

0

Fig. 3. The friction force F, cart displacement X, and ball spin � versus the
time when the ball is incident at �1=60° for the three cases shown in Fig.
2�b�. A positive value of F indicates that the friction force on the ball acts in
the negative x direction in Fig. 1.
same angle of incidence and incident ball spin, the exit ball
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spin can be increased to 216 rad/s with a 1.0 g cart and to
223 rad/s with a 0.1 g cart. A measure of the effectiveness of
the cart in enhancing the ball spin is the tangential coefficient
of restitution ex=−�vx2−r�2� / �vx1−r�1�. When the ball is
incident on the 10 g cart at �1=60° and exits at 162.8 rad/s,
it does so with ex=0.62. For the 0.1 g cart, ex=0.99 at
�2=223 rad /s. The friction force created by motion of the
cart acts to reduce vx2 while it increases �2, so a ball that
bounces with increased spin bounces at an angle closer to the
normal.

IV. DISCUSSION AND CONCLUSION

Tennis players apply topspin to a ball by swinging the
racquet upward to meet the incoming ball, while simulta-
neously swinging the racquet forward. The ball slides across
the strings for a short period and then grips the strings. In the
absence of tangential motion of the strings, there would be
no further change in ball spin after the sliding stage termi-
nates, apart from effects due to tangential distortion of the
ball. The latter effect has not been considered in this paper,
but experimental data show that the tangential distortion of
the ball can act to enhance the ball spin when the ball
bounces off a rigid surface.7,8 Our results show that addi-
tional spin can be expected as a result of the tangential mo-
tion of the strings within the string plane, provided the
strings are allowed to return to their original position during
the impact with the ball.

An enhancement of the present model would be to include
an additional friction force acting on the cart to simulate the
friction force that acts between overlapping strings. If this
friction force is large enough, then the cart will not return to
its original position when the impact is over, and the result
will be a decrease in the outgoing spin of the ball. The latter
result was included in our model by considering a heavy cart.
Another enhancement would be to replace the single cart
with a chain of masses and springs to simulate the flexible
surface.

In the late 1970s, it was found that a large amount of spin
could be imparted to a tennis ball if the strings were not
woven. The International Tennis Federation banned the use
of such stringing methods, insisting that the strings must be
woven. Nevertheless, it is clear that “slippery” strings move
relatively freely past each other even when they are woven, a
result that is easy to demonstrate simply by pulling the
strings aside by hand and then releasing them. Anecdotal
evidence suggests that the result is an enhancement in the
spin of the ball. It is probably for that reason that most pro-
fessional tennis players now use polyester tennis strings
rather than nylon or natural gut. The mechanism outlined in
this paper shows, in a simplified manner, how the additional
spin can be generated, and that even very light strings can
contribute significantly to the spin imparted to the ball. The
total mass of the strings in a racquet is typically about 15 g,
and only a small fraction of that mass moves sideways when
the ball impacts the strings. A small decrease in string mass,
using thinner strings, may help increase the outgoing ball
spin slightly, although a large decrease in string mass would
be impractical because the strings would break too easily.

It is possible to enhance the spin of the ball in other sports,
such as golf and baseball, by coating the striking implement

with a suitably flexible material. Such an effect would be of
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considerable practical interest because the flight distance of a
ball through the air is strongly enhanced when the ball spins
backward.
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