Impact of a ball with a bat or racket
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The collision of a ball with a baseball bat or a tennis racket is usually modeled in terms of rigid body
dynamics, assuming that the hand exerts no impulsive reaction force on the handle during the
collision. In this paper, a uniform aluminum beam was used as an idealized bat or racket, in order
to examine both the rigid body approximation and the assumption that the hand force can be
neglected. An aluminum beam was chosen so that its length and stiffness could easily be varied and
so that the results could be compared with solutions for a flexible beam. It was found that rigid body
models of beams, bats, or rackets are of limited use but the hand force can usually be neglected. The
flexible beam model provides remarkably good agreement with experimental results and provides
new insights into the dynamics of this type of collision, including the nature of the sweet spot.

© 1999 American Association of Physics Teachers.

I. INTRODUCTION investigate both the rigid body approximation and the as-
sumption that the impulsive reaction force of the hand can be

The collision between a baseball bat or a tennis racket anﬁeg|ected_ For this purpose, a uniform aluminum beam was
a ball is a nontrivial problem in mechanics that has beensed as an idealized bat or racket so thatt could be more
difficult to unravel experimentally and difficult to model easily and more accurately instrumenté, its length and
theoretically. The simplest theoretical approach is to assumeiiffness could easily be varied, arid) it could be more
that the bat or racket is perfectly rigid and that the handle isasily analyzed in terms of conventional beam theory. If
not subject to any impulsive force during the collisiol.  such a beam is suspended horizontally by vertical strings
The bat and ball speed after the collision can then be calcugttached to each end, and if a ball impacts at normal inci-
lated from the conservation equations, in terms of the corredence at its center of mags.m), then the effective mass of
sponding speeds before the collision, and an assumed @ie beam would ideally be equal to the actual mass of the
measured coefficient of restitution. This model is based omheam. However, if it bends in the middle and is sufficiently
the assumption that the collision time is much shorter thanong that it remains undeflected at each end during the im-
the time taken for an impulse to propagate along the bat tpact, then the effective mass will be less than the actual
the hand and back to the ball. Under these conditions, nghass. The effective mass at any point along the beam can be
information is transmitted to the ball regarding the impulsivedefined by the relatioMg=F/a, whereF is the force ap-
force that may or may not be exerted on the handle. Howpjieq at that point and is the acceleration of that point. The
ever, the model is not self-consistent in tifak if the bat is  effective mass of a short beam, clamped at both ends, should
perfectly rigid, and the hand exerts no force on the handlepe mych larger than the actual mass of the beam. It would be
then the end of the handle will part company with the handnfinite if the beam were infinitely stiff and attached to an
during the collision(b) the propagation time of a pulse along jnfinite mass at each end. However, if the beam is suffi-
a very rigid bat will be much shorter than the collision time, gjently Jong and sufficiently flexible, it is conceivable that
and (c) if the bat is flexible and the handle remains unde-ihe effective mass for an impact at any point well removed
flected during the collision, then the effective mass of the bagom either end of the beam will be independent of the im-
will be less than the actual mass since only part of the bat igact |ocation or the beam length or the method of support at
involved in the collision. These shortcomings were recogthe ends.
nized by Van Zandt,who developed a numerical model to
analyze the behavior of a flexible, nonuniform bat. A simpli-
fied version of Van Zandt's model, neglecting the shear!- BEAM THEORY
force, is described below. : ; :

It has recently been showir,for both a tennis racket and f TheFequauon.to:‘ mottéonhfortza b?aﬁr?% subject to an external
a baseball bat, that an impulse is transmitted to the hanc?rce' o per unitiength, has the 1o
while the ball is still in contact with the bat or racket. For a 9%y 92 5%y
tennis racket, the ball remains in contact with the strings for ~ PA—z =Fo— W( El W)’ 1)
about 4 or 5 ms, and the impulse takes about 1.5 ms to reach
the hand. For a baseball bat, the ball remains in contact witwhere p is the density of the beam is its cross-sectional
the bat for about 1.0—1.5 ms, depending on the relative speetf€a,E is Young's modulus| is the area moment of inertia,
of the bat and ball, and the impulse takes about 0.6 ms tgndy is the transverse displacement of the beam at coordi-
reach the hand. The impulse reflected from the hand theréiatex along the beam. This equation neglects the shear force
fore arrives back at the ball at a time when the ball is abouwhich is of minor significance for short wavelength modes
to lose contact with the bat or racket. The handle motion iut is negligible for long wavelength mode&For a uniform
strongly affected by the impulsive force exerted by the handeam of mas#! and lengthL, numerical solutions of Eq1)
during the collision, but the question remains as to whethegan be obtained by dividing the beam ificequal segments
the ball is affected to any significant extent. each of massn=M/N and separated in thedirection by a

The experiment described in this paper was designed tdistances=L/N. An impacting ball may exert a force acting

692 Am. J. Phys67 (8), August 1999 © 1999 American Association of Physics Teachers 692



over several adjacent segments, depending on the ball diarfable I. Aluminum beam parametéts.
eter and the assumed number of segments. For simplicity
was assumed that the ball impacts on only one of the seg-""

—H

amm M(@ Tomy Ty(mg T, (M9 Ts(my

ments, exerting a time-dependent forée, The equation of 0.3 6 156 18.2 2.91 1.04 0.53

motion for that segmentthe nth segmentis obtained by 0.6 6 311 73.0 11.6 4.16 2.12

multiplying all terms in Eq.(1) by s, in which case 11 6 570 245 39.1 14.0 7.13

1.1 10 950 147 235 8.39 4.28

Y, Y 1.8 6 933 657 104.8 37.4 19.1
mF=F—(EI5)W, (2)

#Mode periods are given for the first four modes of a beam clamped at one

assuming that the beam is uniform so tEaand| are inde- end.

pendent ofx. The equation of motion for the other segments
is given by Eq.(2) with F=0. The boundary conditions at a

freely supported end are given 5y/dx?>=0 anda®y/dx®  |II. BALL LOSSES
=0. The boundary conditions at a rigidly clamped end are
y=0 anddy/dx=0. Solutions of Egs(2) and(3) overestimate the ACOR due

If it is assumed that the ball behaves as a simple spring® the neglect of energy dissipation in the ball. A correction
with a spring constank,,, then the equation of motion for factor for ball losses was obtained from measurements of the

the ball is given by ACOR when the ball impacted on one of the hee_lvy steel
) ) supports used to clamp the beam. For such an impmact,
mpd<yp /dt*= —F = —Ky(Ypb—Yn), (3 =0.85+0.01, indicating that a fraction (2e2)=0.28 of the

wherem, is the ball massy, is the displacement of the ball, incident ball energy is dissipated i_n the ball. This was con-
andy,—y,, is the compression of the ball. It is assumed thatifmed by measurements of the ratio of the rebound height to

at t=0, y,=0, y=0 for all beam segments, the beam is the drop height when the ball was dropped on a solid floor.

Ny . A simple correction for ball losses can therefore be ob-
initially at rest and thadly, /dt=v;. The subsequent motion {5inaq by multiplying the theoretical values efby 0.85.

of the ball and the beam was evaluated numerically using\jtermatively, ball losses can be incorporated directly in Egs.
finite difference forms of Eq€2) and(3), as described in the (2) and (3) by allowing for hysteresis in the ball. The com-

Appendix. These results were used to determine the reboungtession and expansion phases of a bouncing ball are known
speed of the bally,, and the apparent coefficient of restitu- {g gpey different force law¥>* The area enclosed by a force
tion (ACOR), e=v,/v;. In normal play, a bat or racket is versus compression curve, for a complete compression and
swung toward the ball and is not normally at rest at theexpansion cycle, is equal to the energy dissipated in the ball.
moment of impact. The resulting outgoing speed of the balls realistic model is obtained by assuming tiat k,;x™ dur-

is easily related to laboratory measurements of the ACOR fojg the compression phase aRd-k,x" during the expan-

an initially stationary bat or racket, using a simple coordinategq, phase, wherg is the ball compression. A typical hys-

transformation, as described by Bro‘bly._ teresis curve is shown in Fig. 1. Since the two valueB afe
Analytical solutions of Eq(1) for a uniform beam can be equal at maximum compression,, k, is given by k,

obt§|ned wher_1FO=Q by assuming sqlunons c.)f the .form =k.x§'"". For this model, the energy loss in the b&l},, is
exfdi(kx—wt)], in which case one obtains the dispersion re'given by
lation

k*=myw?/(El), 4 Ep= fﬁ F dx=

wherew is the angular frequency,is the wave number, and
mg is the beam mass per unit length. For a rectangular cro
section beam|=ba®/12 whereb is the width of the beam
anda is the thickness in the direction of vibration. The mass
per unit length iany= pab. From these relations it is easy to
show that the phase velocity,= w/k, and the group veloc-
ity, vy=dw/dk, are given byv,=(Ea’w?/12p)"* and v,
=2v,. For aluminum, E=7x10"°Nm™ and p=2700

(n—m)kyxy™
(m+1)(n+1) °

Jzor an impact on a rigid surface, the maximum potential
energy stored in the ball can be equated to the incident ki-
netic energy of the ball, provided there is no energy loss
during the compression phase. In this case, the ball loss is the
only energy loss, so

(6)

kgm 3, sovy=2v,=192.2@f )Y wheref = w/(2). 20 : T T T
The mode frequencies of a freely supported, rectangular
cross-section beam are given°By 151 N
G?a "™ =
w=?\/E/(12p), (5) 7

5 |- -
where G=kL=4.730, 7.853, 10.996 for the first three
modes. If the beam is clamped at one end tlen1.875, 0 L L L
4.694, 7.853, 10.996 for the first four modes. The clamped 6 02 04 06 08 1
beam mode periods for the beams studied in this experiment x (mm)

are summarized in Table |. The corresponding periods for a

freely supported beam are very similar, except for the fackig. 1. Dynamic hysteresis curve for a superball wkgh=2x 10" Nm™2,
that the “diving-board” modgwith G=1.875 is absent. m=1.0,e=0.85, andn=1.768.
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Fig. 2. Collision of a ball with a freely suspended rigid bat initially at rest. Fig. 3. Experimental arrangement used to measure the incident and rebound

speeds of a ball impacting on an aluminum beam.

E - . . . .
1—e?= b 5= (n m). (7) be determined experimentally or by a flexible bat analysis.
0.5mpvi (n+1) The solution of Eqgs(8)—(10) is given by
Equation(7) indicates that is independent of ball speed. In v, [1-f(1+R)]¥>-R

fact, it is known thate decreases slightly as the ball speed e=-—= , (17
increases, in which caseand m are slowly varying func- Vi 1+R

tions of v;. The effect is relatively smaft and is of no  where f=2E./(m,v?) is the fractional energy lossR
concern in this paper. In this experiment, a superball was=m, /M, and

used in order to minimize the energy loss in the ball itself,

and the incident ball speed was not varied. Previous _ M (12)
measurement$ have shown that a good approximation for B (1+MbY1¢,m)

the dynamic compression of a superball is givemby 1, in is the equivalent mass of the bat as defined in Sec. I. Equa-

which casee?=2/(n+1). For the ball used in this experi- (11) is therefore the same as that for a head-on inelastic
ment, a|3|13ropr|ate parameters are given =2 qision between point masses, andMc . The equivalent
x10*'Nm™?, e=0.85,m=1.0, andn=1.768. Equation2)  mass is equal to the actual mass for an impact at the c.m.
and (3) can therefore be modified so th&t=k;(y,—Yn)  whereb=0, and decreases toward the end of the bat. At the
during the compression phase, aRe:ka(yp—yn)""*°dur-  eng of the bat, wherb=L/2, Mg=M/4. Solutions of Eq.

ing the expansion phase. The results of such a calculation a{g1) are given below to compare with the flexible bat solu-
presented below. tions and with the experimental data.

IV. RIGID BODY APPROXIMATION V. EXPERIMENTAL ARRANGEMENT

The arrangement used in this experiment is shown in Fig.
. A rectangular cross-section aluminum beam of width 32
m was supported horizontally, either by a 1.2 m vertical
ngth of string attached to each end or by clamping one end
to a rigid support. A 36-mm-diam, 42-g superball was

For a sufficiently short or a sufficiently stiff bat, the colli-
sion between a bat and a ball can be analyzed using a rigi
body approximation, as illustrated in Fig. 2. If there is no le
external reaction force from the hand, and if the bat is ini-

tially at rest, then conservation of linear and angular momenfnounted, as a pendulum bob, at the apex of a V-shaped

tum is described by the relations string support, so that it could impact the beam horizontally
mpVv{=MV; ,,—Mmpv, (8) and at right angles to the beam. Impacts toward one edge of
the beam caused it to rotate and vibrate about the long axis,
resulting in a significant reduction in the ball rebound speed.
mpVvb=1;,o—myv,b, (9) Consequently, care was taken to ensure that the ball im-
. . . pacted on the center-line along the beam, 16 mm from each
where M is the bat massV.n, is the recoil speed of the gqqe  This arrangement provided good reproducibility as
center of masgec.m,) of the bat ¢, is the moment of inertia  \yel| as a simple and accurate means of both controlling and
of the bat about its c.mg is the angular velocity of the bat measuring the ball speed. For the latter purpose, a small
after the collision, andb is thezlmpact paramet'er. For a uni- (5 mmx 15 mm) rectangular card was glued to the top of the
form bat of lengthL, I, =ML“/12. Conservation of energy pgaji. A He—Ne laser beam was directed parallel to the beam
is described by so that it could pass sequentially through two small holes in
mbvfzmbvng Mvg w2 2E,, (10) the car_d, 10 mm apart. The laser beam was detected qsing a
photodiode. From these data, measurements were obtained of
whereE_ is the energy dissipated in the ball plus the energythe ACOR as a function of impact location along the beam.
stored as vibrational energy in the bat. The vibrational en- It is difficult to suspend a beam so that both ends are
ergy is eventually dissipated in the bat, or in the hands, weltotally free. The method of supporting the beam at each end
after the collision is over. Inclusion of a vibrational loss termby a length of string or fine wire is a good approximation,
allows one to relax the assumption that the bat is perfectlgince the restoring force on the beam due to the string sup-
rigid, but rigid body dynamics alone does not provide anyport is much smaller than the impulsive force of the ball
clues as to the magnitude Bf . The vibrational losses must acting on the beam, at least for small horizontal displace-

and
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ments of the beam. In this experiment, the ball was incident

at low speed, about 1 m4 the impact duration was about 4 (a) m 1.8 m free beam

ms, and the end of the beam deflected horizontally by less

than 4 mm during the impact. The peak impact force was

about 15 N, and the peak horizontal restoring force due to

the string support was about 0.01 N. (b)
Two piezo ceramic disks were mounted on the beam with

adhesive tape in order to monitor the impact duration and the

propagation delay of the transverse wave along the beam. (c)

The disks were 25 mm in diameter, 0.3 mm thick, and had a
mass of only 1.9 g so they did not have any significant effect
on the behavior of the beam. However, measurements of

were obtained without the disks in place since a direct im- ) . .
pact with a disk acted to decreasby about 5%. The disks 0 20 40 60
were connected to 184} oscilloscope probes using very
light leads taped to the beam in order to avoid any spurious
response due to independent motion of the leads. The OUtPHYy 4. Measurements of wave propagation along an aluminum tigam
signals from the piezo disks were recorded on a digital Stor=1.g m,a=6 mm, b=32 mm when a superball impacts at one end, show-
age oscilloscope. A direct impact of the ball on a piezo disking waveforms of@) the impact force on the bearth) the beam velocity at
provides a measurement of the force of the ball on the diskhe impact end, an¢t) the beam velocity at the other end of the beam.
If the ball impacts at some other point on the beam, then the
output of a piezo attached at any poidtalong the beam
provides a measurement of the local acceleration of the beams ~. However, the frequency is not sufficiently well-
at pointP. For some experiments, the probe output was condefined to provide an accurate estimate of the group velocity
nected to arRC integrator of time constant 1.0 s in order to for this data. Better measurements of the dispersion relation
monitor the local velocity of the beam. are obtained from measurements of the vibration periods,
which were found to agree closely with the results given in
Table I.

Numerical solutions of Eq€2) and(3) for this impact are
ecshown in Fig 5. The solutions are generally consistent with
dhe observed waveforms but there is no wave dampir(@)in

or (3), so the high frequency components feature more

t (ms)

VI. WAVE SPEED MEASUREMENTS

When a ball impacts on a beam, it excites a broad sp
trum of frequency components from zero frequency up t

zero frequency and drops to zerofat 1.5/7. In theory, the tial fashi b d. This feature implies that
impulse observed at any point on the beam, shortly after th@N exponential fashion, as observed. ThiS eature Implies tha
ost of the impact energy is absorbed near the impact point

impact, should contain frequency components up to abo ' T !
1.5/7. In practice, the highest frequency components are tog"d 1S then redistributed along the beam over a relatively
A | ong time period due to the low group velocity of the low

small in amplitude and too heavily damped to be observe .

All components are dispersed along the beam since the higf'['equency components of the impulse.
frequency components propagate faster than the low fre-

guency components. Results obtained with an aluminunvll. ACOR MEASUREMENTS

beam of length 1.8 m, widtftb=32mm, and thicknesa

=6 mm are shown in Fig. 4. The beam was freely suspendege
in a vertical orientation by a length of string attached to the
top end, and struck 10 cm from the bottom end by the 42-rgﬁfll
superball. The velocity waveform at each end of the beal
was detected by a piezo disk mounted at each end of the
beam on the side opposite the impact side. The piezo at the
bottom end therefore responded almost immediately to the
impact and, after a significant delay, to the signal reflected (a)/\
from the top end of the beam.

As shown in Fig. 4, the high frequency components arrive
first and are relatively small in amplitude. The low frequency
components propagate at a lower speed and are larger in
amplitude. The lowest frequency components arrive at a time (c)
when the high frequency components have completed two or
three round trips along the beam. The time delay between the
initial impact and the arrival of any given peak in the dis-
persed impulse provides a measurement of the group veloc-
ity. For example, the second peak in Figbparrives after a
delay of about 22 ms and is centered at a frequency of
around 140 Hz. The velocity of this peak is therefore aboutig. 5. Solutions of Eqs(2) and (3) for the impact shown in Fig. 4, with
160 ms ! and the expected group velocity at 140 Hz is 176corresponding waveform), (b), and(c).

Measurements of the ACOR, and the corresponding theo-
tical estimates of the ACOR, are presented in Fig. 6 for
luminum beams witla=6 mm, b=32mm, and.= 30, 60,
nd 110 cm. Results for a thicker beam, wath 10 mm, b

L 1 I 1 I ]
-10 O 10 20 30 40 50 60
t (ms)
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1 e 1 e Fig. 6. A comparison of theoretical and experimental
o L=60cm a=6mm F L=60cm a=6mm ] values of ACOR for the 6-mm-thick aluminum beams.
0.8F 3 0.8F 3 >
F 5 o 1 Experimental data are represented by closed dots. The
o6k 3 0.6 F both ends free 3 solid curves represent numerical solutions of E@3.
e E i & E . and (3), multiplied by 0.85 to account for ball losses.
0.4 = 041 . .. E The thin line curve for the 110-cm clamped beam is
‘ E _ 3 0.2F /o i .\ 4 computed with hysteresis losses included in the dynam-
0.2 o clamped at x = 0 ] L rigid bat model - ics. The dashed curves for the freely supported beams
ofun bl bbb S S e s S P WA o are solutions for a rigid body model with a loss fraction
0 10 20 30 40 50 &0 0 10 20 30 40 50 €0 f=0.6 for the 60-cm beam anf=0.2 for the 30-cm
x (cm) X (cm) beam.
1 1 SRR ARAAN RS RAARERERRR RS
0.8 L=110cm a=6mm 3 0.8 L=110cm a=6mm E
0.6 F \y®— hysteresis loss B 0.6 3
e £ ] e - -
0.4 E— _: 0.4 :— . _:
0.2 clamped at x = 0 ] 0.2F both ends free .
0:...1...|...|...|...|. oMby ol binily
0 20 40 60 80 100 0 20 40 60 80 100
x {cm) x (cm)

=32mm, and_=110cm are shown in Fig. 7. The theoreti- higher values ofv, were observed for impacts close to the
cal estimates were obtained using a simple correction factdree end, due to the fact that the beam vibrated and struck the
of 0.85 for ball losses. The spring constant was takek,as almost stationary ball soon after the initial impact. These
=2x10*Nm~! to be consistent with the observed impact double-impact results are not included in Fig. 6. Results ob-
duration, about 4.2 ms. An alternative theoretical value,of tained for the lighter 30-cm free beam were not as accurate
allowing for dynamic hysteresis losses in the ball, is showrPr as reproducible as the other beams, since small misalign-
(shown as a thinner linds very similar to the first solution the long axis. .
but provides slightly better agreement with the experimental The results in Fig. 6 show very clearly that, for a suffi-
data. ciently long beam(a) the impact of a ball near one end of a

Apart from a few minor discrepancies, agreement betweeR€am is not affected by the length of the beam or the method
the theoretical and experimental valueseofs remarkably ~ Of support at the other end aifd) the ACOR for an impact
good. Higher than expected valueswafcan result if the ball anywhere along the central section of a beam is independent
rotates slightly on impact, thereby reducing the effectiveOf the impact location and is not affected by the length of the
width of the card and the effective distance between théeam or the method of support. For the longer 6-mm-thick
holes in the card. For the 30-cm clamped beam, significantlfpeams, the ACOR remains constantat0.45+0.02 along
the beam up to a point about 15 cm from each end. This
result implies that the rebound speed is affected only if the
impulse reflected off one end arrives back at the impact point
within the 4.2-ms period of the impact. This places an upper
limit on the propagation speed, of 30 cm/4.2-a7d ms %, of
the significant frequency components. In other words, only
those frequency components with a propagation speed of 71
ms ! or less have any significant influence on the rebound
speed. For a 6-mm-thick beam, the group velocity is 71ms
atf=22Hz orT=1/f=45ms.

There is no simple formula that predicts that 22 Hz is a
critical frequency, but most of the energy of the impulse is
contained in the low frequency components. The dynamics
of the situation are illustrated in Fig. 8, which shows the
theoretical beam deflection, for a freely supported beam, at
equal time increments during and shortly after the impact.

1 lIIIIIIIIII‘IIlIlIiII
0.8fF

0.6
e

TTT[rrr[rre
®
[ ]
[ ]
paalaaalaas

0.4

L=110cm a=10mm

0.2

-

both ends free

ofF
0 20 40 60 80 100
x (cm)

Fig. 7. A comparison of theoretical and experimental values of ACOR for
the 10-mm-thick aluminum beam. Solutions of E(®. and (3) are multi-
plied by 0.85 to account for ball losses.
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3 —————1— that the beam mass is less than the actual mass anélithat
less than 0.6. The problem with the rigid body model is that
there is no solution of Eq(11) wheree remains constant
o = 045 over the central section of the beam. A rigid body solution
1.5F ' ] could be “forced” to fit the data if is allowed to vary with
X, but the flexible beam solution is obviously superior. Nev-
ertheless, a “forced” fit provides a valid measure of the
fractional energy lossf, consistent with the conservation
equations. The fractional energy loss is about 0.6 in the
middle of the 60-cm free beam and alsoxat 3.8cm and
x=056.2 cm, but it is different at other points along the beam.
A much better rigid body fit can be obtained for the

2.5 impact at 55 cm -

y (mm)

ST =30-cm free beam since the propagation time of an impulse
251 impact at 90 cm ] along the beam is then comparable to the duration of the
_ 2 o = 0.42 . impulse. A good fit is obtained by assuming that the beam
g 1.5} ~ mass is its actual mass and tHat 0.2, indicating that the
E 4L ball loss is the main energy loss and that the fractional en-
> 05| ergy loss is less than that for an impact on a hard surface.
0 This fit is shown by the dashed curve for the 30-cm free
s il beam. The solid curve is the solution of E¢®). and(3) with
"0 02 0.4 a correction factor of 0.85. An even better fit is obtained if
the correction factor is changed to 0.89, in which case it is
almost identical to the rigid body solution. This correction
3 e e e e A factor is consistent with the fact that the loss fractfonl
251 impact at x = 103 cm —e?=0.2. One can conclude from these data that the rigid
o 2F body approximation yields reliable results only if the dura-
E 15 e =0.30 tion of the impulse is longer than the vibration period of the
= 4L fundamental mode of the freely supported beam.
> o5t ,
0 — .V.- ‘. ; ."‘"S- VIIl. ENERGY BALANCE
0.50 0.2 04 06 08 1 The results shown in Fig. 8 highlight a significant differ-
x/L ence between the flexible and rigid body models of a beam.

i ) . If one end of a beam is in motion while the other end is at
Fig. 8. They displacement of a freely suspended beanxAls at timest . -
=1, 3, and 5 ms after the initial impag¢at t=0) for a beam withL rest, then th.e linear and angular veIopmes of the beam are
=110 cm,a=6 mm, b=32mm. A 42-g superball impacts normally on the not_ We" defined. SPat'a”y averaged linear and angl'_'lar _Ve'
beam atx=55 cm, x=90 cm, orx=103 cm. The ball is incident in the lOCities can be defined, but these averages contain time-
positive y direction at an initial speed;=1.0ms?® and rebounds in the ~varying vibrational components that are not easily distin-
negativey direction at speedr,=ev,. The modeled impact duration is guished from the time-independent components until well
approximately 4.2 ms for each of the three impacts. after the collision is over. In the ideal case of a lossless,
freely supported beam, and at times well after the collision,
each point in the beam will then have a well-defined time
An impulse propagating toward a free end is reflected with-average velocity or dc component, and a well-defined vibra-
out phase reversal, so the beam moves further away from tht@nal or ac component. The dc components must obey the
ball, thereby reducing the rebound speed. A pulse propagatonservation equations for linear and angular momentum,
ing toward a clamped end is reflected with a phase reversaind the system as a whole must conserve energy, as de-
sending the beam back toward the ball, thereby increasingcribed by the rigid body relations in Sec. IV.
the rebound speed. The reflected pulse has no effect on the Experimentally, it is observed thatis independent of the
ball if the ball rebounds before the reflected pulse reaches thienpact parameter for impacts sufficiently well removed from
ball. The theoretical results in Fig. 8 show that the beaneither end of the beam. Under these conditions, and for any
deflection at the impact point, during the impact, is essengiven freely supported beam, it can be seen f(8jmand(9)
tially the same for impacts at=55cm orx=90cm, indi- thatV.,, isindependent df andw is directly proportional to
cating that the pulse reflectedxat 110 cm does not have a b. Equation(10) indicates that ab increasesE, must de-
significant influence on the impact. However, for an impactcrease by the same amount as the rotational energy increases,
at x=103cm, the reflected pulse acts to deflect the beann order to conserve energy. The distribution of the initial
away from the ball during the impact, thereby reducing theenergy for an impact on th& =110-cm, a=6-mm free
ACOR significantly. beam, is shown in Figs. 9 and 10 for impactsxat55 cm
An attempt to fit theL =60 cm,a=6 mm free beam data andx=90cm, respectively. The curve labeled “Ball PE” is
using a rigid body approximation is shown in Fig. 6. Thethe energy stored in the ball as a result of its compression
dashed curve is the solution of E@L.1), assuming that the plus the energy dissipated in the ball as a result of hysteresis
beam mas#=311g(i.e., its actual magsand thatf=0.6.  losses. The “Beam KE” is the total instantaneous kinetic
The fit is not good, and is even worse for other assume&nergy of all beam segments. The “Beam PE” is the strain
values off. Similar poor fits can be obtained if one assumesenergy arising from beam bending and is givedby
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L o e e ML A o e L mode frequencies and node locations in Figs. 9 and 10 are
F . consistent with beam theorynore obviously when the cal-
0.8 | Ball KE !‘= 110 om free - culations are extended ov'(grr1 several fun()j/amental vibration
S S impact at x = 35 cm 3 periods but the frequencies appear to be twice as high since
T 0.6 [|; 1Ball PE J the vibrational energy components are a maximum twice
= L Beam KE ] each cycle.
& o04f] ¢ Sy, J The vibrational energy stored in the beam can be calcu-
2 HE \ ] lated for each impact point using E@L3), but this is time
Yoo [ Dt - hid e consuming since the calculations must extend over several
XN Beam PE - 0] fundamental vibration periods to determine the time-
P4 VAR R T averaged vibrational energy. A simpler approach is to inte-
0 5 10 15 20 grate the flexible beam equations only during the impact pe-
t (ms) riod to determinee=v, /v, and the energy dissipated in the

ball, and then use the rigid body Eq41) and(12) to deter-
Fig. 9. The distribution of energy following an impact of the superball on mine the frac“.onal _energy los$, The result for a tennis
theL=110-cm,a=6-mm freely supported beam for an impact in the center racket is described in Sec. IX.

IX. RELEVANCE TO A REAL TENNIS RACKET

of the beam.
LEI [d?y)2 The beam parameters chosen for this experiment do not
U= f > W) X. (13 accurately model the parameters of real bats or rackets, but
0 they are not wildly different. Nevertheless, it is of interest to

Most of the initial energy of the ball is rapidly converted to consider more realistic parameters. Consider, for example, a
potential energy of the ball as a result of its compression. Agraphite/epoxy composite tennis racket of length 72 cm,
the ball expands, some of this energy is dissipated in the bathassM =320 g, and thicknesa=20 mm. The fundamental
and the rest is distributed as shown in Figs. 9 and 10. It ivibration frequency of such a racket, when freely suspended
coincidental that the energy dissipated in the ball is almosby a length of string, is typically about 125 Hperiod T
identical to the kinetic energy of the ball after the collision. =8 mg. Despite the fact that the racket head is round, the
For an impact at the center of the beam, the beam recoilgame is hollow, and the ball impacts on almost massless
with a time-averaged stored potential energy slightly smallektrings, the vibration modes and the node locations of such a
than the time-averaged kinetic energy. For the impact at 9¢acket can be accurately modeled by assuming that the racket
cm, the ball rebounds with almost the same speed as afehaves as a uniform beam. The zero frequency dynamics of
impact at the center, but the kinetic energy transferred to thghe racket(i.e., its rotation, translation, and the location of
beam is increased, and the stored PE in the beam is dgne center of percussipman also be modeled in terms of a
creased, as expected from the conservation equations. fhiform beam, provided the ball impacts the strings on the
!eaSt that is the situation that evolves well after the CO”lSlOﬂ|0ng axis through the handle. An off-axis impact will cause
IS Over. o o the racket to rotate about the long axis, in which case the
As shown in Figs. 9 and 10, the distribution of energyrelevant moment of inertia is considerably larger than that of
between “Beam KE” and “Beam PE” does not depend sig- 3 uniform, rectangular cross-section beam of the same mass,
nificantly on the impact point during the collision itself. Con- |ength, and thickness as the racket. From (.the relevant
sequently, the ball rebounds with essentially the same speeg|ye of E/p for the racket is %10’ Nmkg L. This value
regardless of the impact location, while the beam dynamicgs £/, is ahout a factor of 6 smaller than that observed for a
evolves with time, and continues to evolve after the ball hagpight graphite composite tube, and reflects the fact that the
lost contact with the beam. After several transits of the im- ;. atis loaded by the strings, the grip, a heavy coat of paint,

pulse up and down the beam, it is then possible to mterpreénd other reinforcement material, and also indicates that the

the motion of the beam in terms of rigid body dynamics. The.a4n fibers are not all aligned in the same direction, but are

woven into a braided cloth.
The rules of tennis specify that a tennis ball must have a

' L =' 110 om ;ree ] mass of 57 g, a spring constakit-2x 10°Nm™%, and a
0.8l Ball KE impact at x = 90 cm 1 coefficient of restitutiof COR) of 0.74 when dropped from a
g L\, i height of 100 in. onto a concrete slab, with only small varia-
% o6 |/ 4 BalPE Beam KE i tions permitted. In this case, the ACOR is the same as the
g B ] COR since the slab remains at rest. The ball therefore loses
2 0.4 : i about 45% of its initial energy when dropped onto a concrete
o N A slab. In normal play, the ball does not impact on concrete or
v F - 1 even on the racket frame. The impact is cushioned by the
0.2 | s St b - . . . .
H :/‘\,' VAN strings, with the result that the ball compression is reduced
o LLi/BeamRE y | A and hence the ball loss is less than that for an impact on
o 5 10 15 20 concrete. When a ball is dropped onto the strings, and the

head is clamped, the ball rebounds to about 70%—-80% of its
drop height, depending on the string tension, the ball speed,
Fig. 10. The distribution of energy following an impact of the superball on @Nd the condition of the ball. Essentially all of the energy
theL=110-cm,a=6-mm freely supported beam for an impact 20 cm from absorbe_d by the strings is given back to the balh the

one end of the beam. calculations presented below, it is assumed that the bounce

t (ms)
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0 10 20 30 40 50 60 70 Fig. 12. Snapshots of the racket at 2-ms time intervals when the handle is
X (cm) pivoted at the end of the handle and the ball impactg=aB86 cm atv;

=1.0ms™
Fig. 11. Theoretical estimates of the ACOR for a graphite tennis racket of
length 72 cm, mass 320 g, and thickness 20 mm. The tip of the racket, at
x=0, is freely supported. The handle is either freely supported, pivoted a#.2 ms for the superball The reflected pulse from the
x=72 cm, or rigidly clamped betweer=62 cm andk=72 cm. Also shown  clamped end of the racket catches up with the ball as it is
is a rigid body solution for the freely suspended racket, With0.3. The about to rebound, and ejects the ball at a relatively high
racket strings extend typically from=1 cm to about=34 cm. speed. Furthermore, the contact duration is extended to 6.2
ms by this effect. In the case of the free or pivoted racket,

o ) ) ) reflections from either end take slightly longer to reach the
height is 72%, corresponding either to a “used” ball impact-pa|| due to the additional 10 cm racket length. When the
ing at low speed or a new ball impacting at relatively highreflection does reach the ball, the racket moves away from
speed. The hysteresis losses can be modeled, as descrihgg pall, with the result that the contact time is reduced to
above, using;=2x10*Nm™* ande’=0.72 ore=0.85, in  about 5.2 ms, compared with 5.5 ms for an impact on a rigid
which casem=1 andn=1.768. The relevant compression surface. The dynamics are illustrated in Figs. 12 and 13,
and energy loss when the racket head is free to recoil ishowing snapshots of the racket at 2-ms intervals after the
governed by the relations =k,(y,—Yy,) during the com- initial impact.
pression phase arfel=k,(y,—y,)* "¢ during the expansion The “slingshot” effect of the reflected pulse from a
phase. clamped end is mainly of academic interest since the hand

The impact force acts via the strings over the whole rackend wrist act more like a pivot joint than a rigid clamp and
head, but not instantaneously since there is a finite propag&ince the ball normally impacts in a region about 10-25 cm
tion delay, of order 0.5 ms, through the strings. It is assumedom the tip of the racket, rather than near the center of the
in the calculations presented below that the ball impacts ofi@cket(i.e., about 36 cm from the tjpor near the clamped
only one of theN segments, since the force is transmitted toend. Consequently, the main significance of the results
its nearest neighbors, with a time delay comparable with thaghown in Fig. 11 is that, for an impact on the strings, the
through the strings, as a result of beam bending. Furthepehavior of the ball is almost totally independent of the
details of the collision would require a two-dimensional method of support of the handle. There is only a marginal
model of the racket head to take into account the twodifference in the ACOR, about 20—30 cm from the tip of the
dimensional nature of wave propagation through the string§acket, between a freely supported racket and one that is
as well as the frame. pivoted at the end of the handle.

Calculations of the ACOR for the above racket and ball Also shown in Fig. 11 is a rigid body calculation for this
parameters are shown in Fig. 11, for conditions where théacket, assuming that it is freely suspended and that the frac-
racket is(a) freely suspended ab) rigidly clamped over a tional energy los$=0.3. This value of was chosen to give
10 cm length at the end of the handle(oy pivoted about an  a reasonable fit to the flexible racket solutions. The fit agrees
axis through the end of the handle. The length of themoderately well with the flexible racket results, except near
clamped racket is reduced, by the clamp, to 62 cm. In practhe tip and the throat of the racket since vibration losses act
tice, the hand does not act as a rigid clamp, since the racket
and the hand pivot about an axis through the wrishe

boundary conditions at a pivot end are givenyy0 and T T T T T 1
9%yl 9x>=0 since the displacement and the bending moment 15F L =72 cm racket
are both zero at a pivdbr “pinned”) joint. A “.6ms

The racket results are surprising since the ACOR near the g 1r n
center of the racket is strongly affected by wave reflection : 0.5 4 Ms— clamped |
from the clamped end, but not by reflections from the same ’ . end
end when that end is free or pivoted. This result is not simply 0L 5 ms * b .
due to the fact that the clamped racket is 10 cm shorter than 05 L, kall
the other rackets. The clamped rac_ket has almost thQ same 0 10 20 30 40 50 60 70
length and mass as the 60-cm aluminum beam shown in Fig. X (cm)

6. The difference is that the racket is slightly stiffer, having a

higher fundamental vibration freque_n(:;QS Hz for the free  Fig. 13. snapshots of the racket at 2-ms time intervals when the handle is
racket and 87 Hz for the free aluminum begaamd the ball  clamped betweerx=62cm andx=72cm and the ball impacts at

contact time is slightly longei6.2 ms for the tennis ball and =31cm atv,;=1.0ms™
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Fig. 14. A forced rigid body fit to the flexible beam solutions for the freely o 15 The sym of the translational and rotational energy fractions in Fig.

suspended gre_iphite racket. The (_jistribution of the_initial ball energy is pIOt'14 is shown by the dashed curve. The solid curve shows the fraction of the
ted as a function of the impact distaneefrom the tip of the racket. Each initial ball energy that is transferred to the handle, as a function of the

. . P 2 “ ” H
curve is normalized to the initial energy @gvy. The “loss” curve is the  jnnact distancey, from the tip of the racket. The node points correspond to
fraction of this energy dissipated in the ball. The “Vibr” curve is the frac- nodes of the fundamental mode. and the COR=a24 cm is shown for a
tion stored in racket vibrations. The various energy fractions sum to un'tyt:onjugate point at the end of the handle.

In practice, the only region of interest is<&< 30 cm, corresponding to an
impact on the strings.

riod following the impact. The energy stored in the handle as

a result of local beam bending was found to be neglible.
to increasd in these locations. A “forced” rigid body fit to However, the handle still vibrates after the impact due to the
the flexible racket solutions, for an impact on the freely suswvibrational energy stored in other parts of the racket. It might
pended racket, is shown in Fig. 14. The ball loss due tappear from Fig. 15 that, for impacts near the end of the
hysteresis, and the ACOR, were calculated using the flexiblaandle, more energy is stored in the handle than in the whole
beam model. The fractional energy losswas then deter- racket. However, the translational plus rotational energy
mined from Egs(11) and (12). The translational and rota- curve represents the time average energy, with the vibra-
tional energies of the racket were determined, from theional component removed, whereas the handle energy curve
known value ofe=v, /v, with the aid of Eqs(8) and(9). shows the peak energy in the handle, including the vibra-
The energy stored in racket vibrations, normalized to thdional energy. The most significant feature of the handle en-
initial ball energy, was obtained by subtracting the normal-ergy curve is that the handle energy is minimized for an
ized ball loss fronft. impact in the region from abouk=14cm to aboutx

As shown in Fig. 14, the energy dissipated in the ball is=21 cm. This can be attributed to the fact tatthe vibra-

actually less than that when the head is rigidly clamffed  tional energy is minimized for an impact at the fundamental
the same incident ball speesince the racket frame, as well vibration node(atx=16 cm and(b) the time average kinetic
as the strings, absorbs some of the impact energy. As a renergy drops to zero at any given point in the handle for an
sult, the ball compresses by a smaller amount, and the hysmpact at the corresponding center of percussi©@®P on
teresis loss is reduced. The vibrational energy stored in thghe string$’” For conjugate points between the end of the

racket passes through a broad minimum for an impact at thgandle and 10 cm from the end of the handle, the corre-
fundamental vibration node. It is not zero, since other m0d9§ponding COP points extend fromx=19.4cm to X

are excited at this location, but the fundamental mode is_

clearly the most significant. For a uniform beam, the nOOIe?ng a region where shock and vibration transferred from the
of the fundamental mode are locatedxat =0.22 andx/L  hangle to the player are minimized, corresponds to impacts
=0.78, or atx=16cm andx=56cm for theL=72-cm  pnear or between the fundamental node point and the COP
racket. For a racket, the fundamental node is close to thgoints.

middle of the strings. One might therefore expect a signifi- Manufacturers have strived for many years to produce a
cant localized increase in the ACOR for an impact in theperfectly rigid racket since the vibration losses would then be
middle of the strings. Such an effect is not observed, despiteero. Modern graphite rackets are certainly much stiffer than
the reduction in the energy coupled to racket vibrations at thgne older generation of wood or aluminum rackets, but they
node, since the kinetic energy coupled to the racket passege not infinitely stiff. In fact, they do not need to be Bfis
through a broad maximum near the node point. This effect isncreased by a factor of 3, keeping the racket mass, length,
shown in Fig. 15, where the sum of the translational anchnd thickness fixed, the flexible racket solution is almost
rotational energy fraction curves is plotted as a function ofidentical to the rigid body solution shown in Fig. 11.Hfis

the impact point. Alternatively, one can argue that the balkeduced by a factor of 2 is decreased by about 20% along
does not “know” that it struck a node until after the colli- the whole length of the racket. Consequently, only marginal

sion is over. The impulse must propagate to both ends of thgains can be obtained by increasing the stiffness of modern
racket and back in order for a node point to be establishedygckets.

Also shown in Fig. 15 is a plot of the kinetic energy trans-
ferred to the handle, for the freely suspended racket. Thi coNncCLUSIONS
result was obtained by summing the kinetic energy of all
segments in the last 10 cm of the handle, and recording the In this paper, aluminum beams of different length and
maximum value of the kinetic energy during the 30-ms pe-thickness were used to simulate the behavior of a ball collid-

24.0cm. Consequently, the “sweet spot” zone, represent-
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ing with a baseball bat or a tennis racket. It was found that
the apparent coefficient of restitution, for an impact at any
point well removed from either end of the beam, is indepen-
dent of the impact location or the length of the beam or the
method of support at the ends. These results support the
often-quoted assumption that the impulsive reaction force on
the handle can be neglected. A rigid body model of the col-
lision yields results that are, in general, only roughly consis-
tent with experimental data or with solutions obtained for a
flexible beam. The rigid body model works best when the _ ,
duration of the collision is greater than the vibration periodF'g' 16. Discrete segment model for a uniform bgam. The ball exerts aforce
of the fund'ar_‘nental mode of the freely supported beam. HOWESOSr;tQSr?rt]g.segment and can be treated as a simple or as a nonlinear and
ever, the rigid body model must be supplemented with inde-
pendent estimates of the energy stored in vibrational modes.
The flexible beam model is superior and yields results that
are in remarkably good agreement with experimental data, at
least for a uniform beam. One can therefore expect that an
extension of the model to treat real, nonuniform bats and
rackets will yield similarly reliable results.

The mechanics of a bat and ball collision can be picturedsjyjjarly
in the following simplified terms. During the collision, the ’
bat bends locally by an amount that is independent of the dty yh = 2yr+yr_,
impact point, provided the impact is not too close to the end (W) = 5
of the bat. The impact generates a pulse that propagates to
each end of the bat and returns to the impact point either
before or after the ball has rebounded, depending on the =
flexibility of the ball, the flexibility of the bat, and the dis- S

tance to each end. If the reflected pulses arrive after the ba.lllh time derivati b di | f
rebounds, then the ball has no way of “knowing” where it € ime derivalives can be expressed in an analogous form
sing equal incrementat, in time. Given the valueg,_,,

landed and the rebound speed is independent of the impat ., ) 5 oy
point. Similarly, the beam does not “know” if it was struck Yt. andyy=(dy/dt%), theny,, ; =2y, —y,_;+(At)%y; . At

in the middle or at any of the vibration nodes until well after each time stepy, ., is evaluated for each segment, then the
the collision is over. After the ball has lost contact with the x derivatives are reevaluated prior to the next time step.
bat, the pulse propagates up and down the bat and distributéwever, this procedure cannot be applied to the first two or
the impact energy in a manner that is governed by the corthe last two segments at the ends of the beam since the
servation equations for linear and angular momentum or in derivative at any given segment is expressed in terms of the
manner that can be calculated in terms of the normal modey, displacement of the two segments on either side of the
including the zero frequency modeS$.An experimentalist given segment. Thg displacement of the end segments was
could measure the amplitudes of the various modes after thebtained by imposing the relevant boundary conditions as
collision is over, calculate the energy in the modes, and thedescribed above. For example, at a free epd;y,;=y3

use the conservation equations to calculate the reboundy,=y,—y,. At a clamped endy,=y,=0. At a pivot
speed of the ball. However, it would be simpler to measurgoint, y, =0 andy,=y,/2. These boundary conditions extend
the rebound speed directly. In this sense, a rigid body mod&dyer a small but finite length of the beam and effectively
of the collision is of limited use in determining the rebound reduce the beam length, especially if the number of segments

X

Y= (d?y/dx?) = (Y105~ Yhn_09)/S

=(Ynt1—2Yn+Yn_1)/s%

B s
n

(yn+2_ 4yn+l+ 6yn_ 4ynfl+yn72)
4 .

speed of the ball. is small. Ideally, the boundary conditions apply to only one
point at the very end of the beam. Consequently, a small
ACKNOWLEDGMENTS “end correction” was used in the numerical solutions by

allowing the numerical beam to be two segments longer than
It is a pleasure to acknowledge stimulating discussionshe actual beam. However, in order to satisfy the energy
with Professor Howard Brody and Professor Alan Nathan. conservation equations, it was necessary to assume that the
end segments had zero mass. For the other segments,
APPENDIX =L/(N—2) andm=M/(N—2). Good agreement with the
o ) ) analytical eigenmode frequencies was obtained usihg
A finite difference form of Eq.(2) can be obtained by _4q segments.
reference to Fig. 16. The beam is apprQXImateduaseg- The response of a beam to any given impulse consists, in
ments each of mass, separated by a distan&ein the X yhaqry of an infinite set of eigenmodes. In principle, numeri-
direction. If thenth segment is displaced in tiyadirection by 4 integration of Eqs(2) and (3) would therefore require
an amounty,, then infinitesimal time steps to resolve all modes. In practice, it
o (v _ was found that time steps of order 18 provided sufficient
Yn-05=(AY/dX)n-05= (Yn~Yn-1)/s accuracy since the impulse duration, typically about 5 ms,
and was too long to excite modes of frequency greater than about
v o= (dy/dx) = (Yns1—Yn)ls 300 Hz and since the division of the beam iodiscrete
n+0.5 n+0.5— 1 In/te segments eliminated modes of wavelength shorter than the
Hence, segment separatios Experimentally, very high frequency
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TO FATHOM OR TO USE

By 1896 the field of electrical engineering had split from physics. Physicists certainly failed to
heed this author’s advice, and now must attempt to fathom four subtle and mighty forces, nqt two.

“INTRODUCTION
The great forces of the world are invisible and impalpable; we cannot grasp or handle them;
and though they are real enough they have the appearance of being very unreal. Electricjty and
Gravity are as subtle as they are mighty: they elude the eye and hand of the most skillful philoso-
pher. In view of this, it is well for the average man not to try to fathom, too deeply, the science of
either; neither Edison or Tesla have done that yet.
To take the machines and appliances as they are “on the market” and to acquire the skill to
operate them, is the longest step toward the reason for doing it, and why the desired fesults
follow—thus working on the natural method of judging causes from effects.”

N. Hawkins,New Catechism of Electricitiy: A Practical Treati$é€heo. Audel & Co., New York, 1896 p. xv.
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