
Impact of a ball with a bat or racket
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The collision of a ball with a baseball bat or a tennis racket is usually modeled in terms of rigid body
dynamics, assuming that the hand exerts no impulsive reaction force on the handle during the
collision. In this paper, a uniform aluminum beam was used as an idealized bat or racket, in order
to examine both the rigid body approximation and the assumption that the hand force can be
neglected. An aluminum beam was chosen so that its length and stiffness could easily be varied and
so that the results could be compared with solutions for a flexible beam. It was found that rigid body
models of beams, bats, or rackets are of limited use but the hand force can usually be neglected. The
flexible beam model provides remarkably good agreement with experimental results and provides
new insights into the dynamics of this type of collision, including the nature of the sweet spot.
© 1999 American Association of Physics Teachers.
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I. INTRODUCTION

The collision between a baseball bat or a tennis racket
a ball is a nontrivial problem in mechanics that has be
difficult to unravel experimentally and difficult to mode
theoretically. The simplest theoretical approach is to assu
that the bat or racket is perfectly rigid and that the handle
not subject to any impulsive force during the collision.1–4

The bat and ball speed after the collision can then be ca
lated from the conservation equations, in terms of the co
sponding speeds before the collision, and an assume
measured coefficient of restitution. This model is based
the assumption that the collision time is much shorter th
the time taken for an impulse to propagate along the ba
the hand and back to the ball. Under these conditions,
information is transmitted to the ball regarding the impuls
force that may or may not be exerted on the handle. Ho
ever, the model is not self-consistent in that~a! if the bat is
perfectly rigid, and the hand exerts no force on the han
then the end of the handle will part company with the ha
during the collision,~b! the propagation time of a pulse alon
a very rigid bat will be much shorter than the collision tim
and ~c! if the bat is flexible and the handle remains und
flected during the collision, then the effective mass of the
will be less than the actual mass since only part of the ba
involved in the collision. These shortcomings were reco
nized by Van Zandt,5 who developed a numerical model
analyze the behavior of a flexible, nonuniform bat. A simp
fied version of Van Zandt’s model, neglecting the she
force, is described below.

It has recently been shown,6,7 for both a tennis racket an
a baseball bat, that an impulse is transmitted to the h
while the ball is still in contact with the bat or racket. For
tennis racket, the ball remains in contact with the strings
about 4 or 5 ms, and the impulse takes about 1.5 ms to re
the hand. For a baseball bat, the ball remains in contact
the bat for about 1.0–1.5 ms, depending on the relative sp
of the bat and ball, and the impulse takes about 0.6 m
reach the hand. The impulse reflected from the hand th
fore arrives back at the ball at a time when the ball is ab
to lose contact with the bat or racket. The handle motion
strongly affected by the impulsive force exerted by the ha
during the collision, but the question remains as to whet
the ball is affected to any significant extent.

The experiment described in this paper was designe
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investigate both the rigid body approximation and the
sumption that the impulsive reaction force of the hand can
neglected. For this purpose, a uniform aluminum beam w
used as an idealized bat or racket so that~a! it could be more
easily and more accurately instrumented,~b! its length and
stiffness could easily be varied, and~c! it could be more
easily analyzed in terms of conventional beam theory.
such a beam is suspended horizontally by vertical stri
attached to each end, and if a ball impacts at normal in
dence at its center of mass~c.m.!, then the effective mass o
the beam would ideally be equal to the actual mass of
beam. However, if it bends in the middle and is sufficien
long that it remains undeflected at each end during the
pact, then the effective mass will be less than the ac
mass. The effective mass at any point along the beam ca
defined by the relationME5F/a, whereF is the force ap-
plied at that point anda is the acceleration of that point. Th
effective mass of a short beam, clamped at both ends, sh
be much larger than the actual mass of the beam. It would
infinite if the beam were infinitely stiff and attached to a
infinite mass at each end. However, if the beam is su
ciently long and sufficiently flexible, it is conceivable th
the effective mass for an impact at any point well remov
from either end of the beam will be independent of the i
pact location or the beam length or the method of suppor
the ends.

II. BEAM THEORY

The equation of motion for a beam subject to an exter
force,F0 per unit length, has the form8,9

rA
]2y

]t2 5F02
]2

]x2 S EI
]2y

]x2D , ~1!

wherer is the density of the beam,A is its cross-sectiona
area,E is Young’s modulus,I is the area moment of inertia
and y is the transverse displacement of the beam at coo
natex along the beam. This equation neglects the shear fo
which is of minor significance for short wavelength mod
but is negligible for long wavelength modes.5,8 For a uniform
beam of massM and lengthL, numerical solutions of Eq.~1!
can be obtained by dividing the beam intoN equal segments
each of massm5M /N and separated in thex direction by a
distances5L/N. An impacting ball may exert a force actin
692© 1999 American Association of Physics Teachers
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over several adjacent segments, depending on the ball d
eter and the assumed number of segments. For simplici
was assumed that the ball impacts on only one of the s
ments, exerting a time-dependent force,F. The equation of
motion for that segment~the nth segment! is obtained by
multiplying all terms in Eq.~1! by s, in which case

m
]2yn

]t2 5F2~EIs!
]4yn

]x4 , ~2!

assuming that the beam is uniform so thatE and I are inde-
pendent ofx. The equation of motion for the other segmen
is given by Eq.~2! with F50. The boundary conditions at
freely supported end are given by]2y/]x250 and]3y/]x3

50. The boundary conditions at a rigidly clamped end
y50 and]y/]x50.

If it is assumed that the ball behaves as a simple spr
with a spring constantkb , then the equation of motion fo
the ball is given by

mbd2yb /dt252F52kb~yb2yn!, ~3!

wheremb is the ball mass,yb is the displacement of the bal
andyb2yn is the compression of the ball. It is assumed th
at t50, yb50, y50 for all beam segments, the beam
initially at rest and thatdyb /dt5v1 . The subsequent motio
of the ball and the beam was evaluated numerically us
finite difference forms of Eqs.~2! and~3!, as described in the
Appendix. These results were used to determine the rebo
speed of the ball,v2 , and the apparent coefficient of restit
tion ~ACOR!, e5v2 /v1 . In normal play, a bat or racket i
swung toward the ball and is not normally at rest at
moment of impact. The resulting outgoing speed of the b
is easily related to laboratory measurements of the ACOR
an initially stationary bat or racket, using a simple coordin
transformation, as described by Brody.4

Analytical solutions of Eq.~1! for a uniform beam can be
obtained whenF050 by assuming solutions of the form
exp@i(kx2vt)#, in which case one obtains the dispersion
lation

k45m0v2/~EI !, ~4!

wherev is the angular frequency,k is the wave number, and
m0 is the beam mass per unit length. For a rectangular c
section beam,I 5ba3/12 whereb is the width of the beam
anda is the thickness in the direction of vibration. The ma
per unit length ism05rab. From these relations it is easy t
show that the phase velocity,vp5v/k, and the group veloc-
ity, vg5]v/]k, are given byvp5(Ea2v2/12r)1/4 and vg

52vp . For aluminum, E5731010N m22 and r52700
kg m23, so vg52vp5192.2(a f )1/2 where f 5v/(2p).

The mode frequencies of a freely supported, rectang
cross-section beam are given by8,9

v5
G2a

L2 AE/~12r!, ~5!

where G5kL54.730, 7.853, 10.996 for the first thre
modes. If the beam is clamped at one end thenG51.875,
4.694, 7.853, 10.996 for the first four modes. The clamp
beam mode periods for the beams studied in this experim
are summarized in Table I. The corresponding periods fo
freely supported beam are very similar, except for the f
that the ‘‘diving-board’’ mode~with G51.875! is absent.
693 Am. J. Phys., Vol. 67, No. 8, August 1999
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III. BALL LOSSES

Solutions of Eqs.~2! and~3! overestimate the ACOR du
to the neglect of energy dissipation in the ball. A correcti
factor for ball losses was obtained from measurements of
ACOR when the ball impacted on one of the heavy st
supports used to clamp the beam. For such an impace
50.8560.01, indicating that a fraction (12e2)50.28 of the
incident ball energy is dissipated in the ball. This was co
firmed by measurements of the ratio of the rebound heigh
the drop height when the ball was dropped on a solid flo

A simple correction for ball losses can therefore be o
tained by multiplying the theoretical values ofe by 0.85.
Alternatively, ball losses can be incorporated directly in E
~2! and ~3! by allowing for hysteresis in the ball. The com
pression and expansion phases of a bouncing ball are kn
to obey different force laws.10,11The area enclosed by a forc
versus compression curve, for a complete compression
expansion cycle, is equal to the energy dissipated in the b
A realistic model is obtained by assuming thatF5k1xm dur-
ing the compression phase andF5k2xn during the expan-
sion phase, wherex is the ball compression. A typical hys
teresis curve is shown in Fig. 1. Since the two values ofF are
equal at maximum compression,x0 , k2 is given by k2

5k1x0
m2n . For this model, the energy loss in the ball,Eb , is

given by

Eb5 R F dx5
~n2m!k1x0

~m11!

~m11!~n11!
. ~6!

For an impact on a rigid surface, the maximum poten
energy stored in the ball can be equated to the incident
netic energy of the ball, provided there is no energy lo
during the compression phase. In this case, the ball loss is
only energy loss, so

Table I. Aluminum beam parameters.a

L ~m! a ~mm! M ~g! T0 ~ms! T1 ~ms! T2 ~ms! T3 ~ms!

0.3 6 156 18.2 2.91 1.04 0.53
0.6 6 311 73.0 11.6 4.16 2.12
1.1 6 570 245 39.1 14.0 7.13
1.1 10 950 147 23.5 8.39 4.28
1.8 6 933 657 104.8 37.4 19.1

aMode periods are given for the first four modes of a beam clamped at
end.

Fig. 1. Dynamic hysteresis curve for a superball withk1523104 N m21,
m51.0, e50.85, andn51.768.
693Rod Cross
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12e25
Eb

0.5mbv1
2 5

~n2m!

~n11!
. ~7!

Equation~7! indicates thate is independent of ball speed. I
fact, it is known thate decreases slightly as the ball spe
increases, in which casen and m are slowly varying func-
tions of v1 . The effect is relatively small11 and is of no
concern in this paper. In this experiment, a superball w
used in order to minimize the energy loss in the ball itse
and the incident ball speed was not varied. Previo
measurements11 have shown that a good approximation f
the dynamic compression of a superball is given bym51, in
which casee252/(n11). For the ball used in this exper
ment, appropriate parameters are given byk152
3104 N m21, e50.85,m51.0, andn51.768. Equations~2!
and ~3! can therefore be modified so thatF5k1(yb2yn)
during the compression phase, andF5k2(yb2yn)1.768 dur-
ing the expansion phase. The results of such a calculation
presented below.

IV. RIGID BODY APPROXIMATION

For a sufficiently short or a sufficiently stiff bat, the coll
sion between a bat and a ball can be analyzed using a
body approximation, as illustrated in Fig. 2. If there is
external reaction force from the hand, and if the bat is i
tially at rest, then conservation of linear and angular mom
tum is described by the relations

mbv15MVc.m.2mbv2 ~8!

and

mbv1b5I c.m.v2mbv2b, ~9!

where M is the bat mass,Vc.m. is the recoil speed of the
center of mass~c.m.! of the bat,I c.m. is the moment of inertia
of the bat about its c.m.,v is the angular velocity of the ba
after the collision, andb is the impact parameter. For a un
form bat of lengthL, I c.m.5ML2/12. Conservation of energ
is described by

mbv1
25mbv2

21MVc.m.
2 1I c.m.v

212Ec , ~10!

whereEc is the energy dissipated in the ball plus the ene
stored as vibrational energy in the bat. The vibrational
ergy is eventually dissipated in the bat, or in the hands, w
after the collision is over. Inclusion of a vibrational loss ter
allows one to relax the assumption that the bat is perfe
rigid, but rigid body dynamics alone does not provide a
clues as to the magnitude ofEc . The vibrational losses mus

Fig. 2. Collision of a ball with a freely suspended rigid bat initially at re
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be determined experimentally or by a flexible bat analys
The solution of Eqs.~8!–~10! is given by

e5
v2

v1
5

@12 f ~11R!#1/22R

11R
, ~11!

where f 52Ec /(mbv1
2) is the fractional energy loss,R

5mb /ME , and

ME5
M

~11Mb2/I c.m.!
~12!

is the equivalent mass of the bat as defined in Sec. I. Eq
tion ~11! is therefore the same as that for a head-on inela
collision between point massesmb andME . The equivalent
mass is equal to the actual mass for an impact at the
whereb50, and decreases toward the end of the bat. At
end of the bat, whereb5L/2, ME5M /4. Solutions of Eq.
~11! are given below to compare with the flexible bat so
tions and with the experimental data.

V. EXPERIMENTAL ARRANGEMENT

The arrangement used in this experiment is shown in F
3. A rectangular cross-section aluminum beam of width
mm was supported horizontally, either by a 1.2 m verti
length of string attached to each end or by clamping one
to a rigid support. A 36-mm-diam, 42-g superball w
mounted, as a pendulum bob, at the apex of a V-sha
string support, so that it could impact the beam horizonta
and at right angles to the beam. Impacts toward one edg
the beam caused it to rotate and vibrate about the long a
resulting in a significant reduction in the ball rebound spe
Consequently, care was taken to ensure that the ball
pacted on the center-line along the beam, 16 mm from e
edge. This arrangement provided good reproducibility
well as a simple and accurate means of both controlling
measuring the ball speed. For the latter purpose, a s
(5 mm315 mm) rectangular card was glued to the top of t
ball. A He–Ne laser beam was directed parallel to the be
so that it could pass sequentially through two small holes
the card, 10 mm apart. The laser beam was detected us
photodiode. From these data, measurements were obtain
the ACOR as a function of impact location along the bea

It is difficult to suspend a beam so that both ends
totally free. The method of supporting the beam at each
by a length of string or fine wire is a good approximatio
since the restoring force on the beam due to the string s
port is much smaller than the impulsive force of the b
acting on the beam, at least for small horizontal displa

Fig. 3. Experimental arrangement used to measure the incident and reb
speeds of a ball impacting on an aluminum beam.
694Rod Cross
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ments of the beam. In this experiment, the ball was incid
at low speed, about 1 ms21, the impact duration was about
ms, and the end of the beam deflected horizontally by
than 4 mm during the impact. The peak impact force w
about 15 N, and the peak horizontal restoring force due
the string support was about 0.01 N.

Two piezo ceramic disks were mounted on the beam w
adhesive tape in order to monitor the impact duration and
propagation delay of the transverse wave along the be
The disks were 25 mm in diameter, 0.3 mm thick, and ha
mass of only 1.9 g so they did not have any significant eff
on the behavior of the beam. However, measurementse
were obtained without the disks in place since a direct
pact with a disk acted to decreasee by about 5%. The disks
were connected to 10-MV oscilloscope probes using ver
light leads taped to the beam in order to avoid any spuri
response due to independent motion of the leads. The ou
signals from the piezo disks were recorded on a digital s
age oscilloscope. A direct impact of the ball on a piezo d
provides a measurement of the force of the ball on the d
If the ball impacts at some other point on the beam, then
output of a piezo attached at any pointP along the beam
provides a measurement of the local acceleration of the b
at pointP. For some experiments, the probe output was c
nected to anRC integrator of time constant 1.0 s in order
monitor the local velocity of the beam.

VI. WAVE SPEED MEASUREMENTS

When a ball impacts on a beam, it excites a broad sp
trum of frequency components from zero frequency up
about 1/t, wheret is the duration of the impact. The forc
waveform acting on the beam is approximately a half s
wave, in which case the amplitude of the spectrum peak
zero frequency and drops to zero atf 51.5/t. In theory, the
impulse observed at any point on the beam, shortly after
impact, should contain frequency components up to ab
1.5/t. In practice, the highest frequency components are
small in amplitude and too heavily damped to be observ
All components are dispersed along the beam since the
frequency components propagate faster than the low
quency components. Results obtained with an alumin
beam of length 1.8 m, widthb532 mm, and thicknessa
56 mm are shown in Fig. 4. The beam was freely suspen
in a vertical orientation by a length of string attached to
top end, and struck 10 cm from the bottom end by the 4
superball. The velocity waveform at each end of the be
was detected by a piezo disk mounted at each end of
beam on the side opposite the impact side. The piezo a
bottom end therefore responded almost immediately to
impact and, after a significant delay, to the signal reflec
from the top end of the beam.

As shown in Fig. 4, the high frequency components arr
first and are relatively small in amplitude. The low frequen
components propagate at a lower speed and are large
amplitude. The lowest frequency components arrive at a t
when the high frequency components have completed tw
three round trips along the beam. The time delay between
initial impact and the arrival of any given peak in the d
persed impulse provides a measurement of the group ve
ity. For example, the second peak in Fig. 4~b! arrives after a
delay of about 22 ms and is centered at a frequency
around 140 Hz. The velocity of this peak is therefore ab
160 ms21 and the expected group velocity at 140 Hz is 1
695 Am. J. Phys., Vol. 67, No. 8, August 1999
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ms21. However, the frequency is not sufficiently wel
defined to provide an accurate estimate of the group velo
for this data. Better measurements of the dispersion rela
are obtained from measurements of the vibration perio
which were found to agree closely with the results given
Table I.

Numerical solutions of Eqs.~2! and~3! for this impact are
shown in Fig 5. The solutions are generally consistent w
the observed waveforms but there is no wave damping in~2!
or ~3!, so the high frequency components feature m
prominently than is observed. An interesting feature of
solutions is that the beam velocity near the impact po
peaks at the end of the impact and then decays toward ze
an exponential fashion, as observed. This feature implies
most of the impact energy is absorbed near the impact p
and is then redistributed along the beam over a relativ
long time period due to the low group velocity of the lo
frequency components of the impulse.

VII. ACOR MEASUREMENTS

Measurements of the ACOR, and the corresponding th
retical estimates of the ACOR, are presented in Fig. 6
aluminum beams witha56 mm, b532 mm, andL530, 60,
and 110 cm. Results for a thicker beam, witha510 mm, b

Fig. 4. Measurements of wave propagation along an aluminum beam~L
51.8 m,a56 mm, b532 mm! when a superball impacts at one end, sho
ing waveforms of~a! the impact force on the beam,~b! the beam velocity at
the impact end, and~c! the beam velocity at the other end of the beam.

Fig. 5. Solutions of Eqs.~2! and ~3! for the impact shown in Fig. 4, with
corresponding waveforms~a!, ~b!, and~c!.
695Rod Cross
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values of ACOR for the 6-mm-thick aluminum beam
Experimental data are represented by closed dots.
solid curves represent numerical solutions of Eqs.~2!
and ~3!, multiplied by 0.85 to account for ball losses
The thin line curve for the 110-cm clamped beam
computed with hysteresis losses included in the dyna
ics. The dashed curves for the freely supported bea
are solutions for a rigid body model with a loss fractio
f 50.6 for the 60-cm beam andf 50.2 for the 30-cm
beam.
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532 mm, andL5110 cm are shown in Fig. 7. The theore
cal estimates were obtained using a simple correction fa
of 0.85 for ball losses. The spring constant was taken akb

523104 N m21 to be consistent with the observed impa
duration, about 4.2 ms. An alternative theoretical value oe,
allowing for dynamic hysteresis losses in the ball, is sho
for the L5110 cm clamped beam. The alternative soluti
~shown as a thinner line! is very similar to the first solution
but provides slightly better agreement with the experimen
data.

Apart from a few minor discrepancies, agreement betw
the theoretical and experimental values ofe is remarkably
good. Higher than expected values ofv2 can result if the ball
rotates slightly on impact, thereby reducing the effect
width of the card and the effective distance between
holes in the card. For the 30-cm clamped beam, significa

Fig. 7. A comparison of theoretical and experimental values of ACOR
the 10-mm-thick aluminum beam. Solutions of Eqs.~2! and ~3! are multi-
plied by 0.85 to account for ball losses.
696 Am. J. Phys., Vol. 67, No. 8, August 1999
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higher values ofv2 were observed for impacts close to th
free end, due to the fact that the beam vibrated and struck
almost stationary ball soon after the initial impact. The
double-impact results are not included in Fig. 6. Results
tained for the lighter 30-cm free beam were not as accu
or as reproducible as the other beams, since small misa
ment errors had a larger effect on rotation of the beam ab
the long axis.

The results in Fig. 6 show very clearly that, for a suf
ciently long beam,~a! the impact of a ball near one end of
beam is not affected by the length of the beam or the met
of support at the other end and~b! the ACOR for an impact
anywhere along the central section of a beam is indepen
of the impact location and is not affected by the length of
beam or the method of support. For the longer 6-mm-th
beams, the ACOR remains constant ate50.4560.02 along
the beam up to a point about 15 cm from each end. T
result implies that the rebound speed is affected only if
impulse reflected off one end arrives back at the impact p
within the 4.2-ms period of the impact. This places an up
limit on the propagation speed, of 30 cm/4.2 ms571 ms21, of
the significant frequency components. In other words, o
those frequency components with a propagation speed o
ms21 or less have any significant influence on the rebou
speed. For a 6-mm-thick beam, the group velocity is 71 m21

at f 522 Hz orT51/f 545 ms.
There is no simple formula that predicts that 22 Hz is

critical frequency, but most of the energy of the impulse
contained in the low frequency components. The dynam
of the situation are illustrated in Fig. 8, which shows t
theoretical beam deflection, for a freely supported beam
equal time increments during and shortly after the impa

r
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An impulse propagating toward a free end is reflected w
out phase reversal, so the beam moves further away from
ball, thereby reducing the rebound speed. A pulse propa
ing toward a clamped end is reflected with a phase reve
sending the beam back toward the ball, thereby increa
the rebound speed. The reflected pulse has no effect on
ball if the ball rebounds before the reflected pulse reaches
ball. The theoretical results in Fig. 8 show that the be
deflection at the impact point, during the impact, is ess
tially the same for impacts atx555 cm orx590 cm, indi-
cating that the pulse reflected atx5110 cm does not have
significant influence on the impact. However, for an imp
at x5103 cm, the reflected pulse acts to deflect the be
away from the ball during the impact, thereby reducing
ACOR significantly.

An attempt to fit theL560 cm, a56 mm free beam data
using a rigid body approximation is shown in Fig. 6. T
dashed curve is the solution of Eq.~11!, assuming that the
beam massM5311 g ~i.e., its actual mass! and thatf 50.6.
The fit is not good, and is even worse for other assum
values off. Similar poor fits can be obtained if one assum

Fig. 8. They displacement of a freely suspended beam vsx/L at timest
51, 3, and 5 ms after the initial impact~at t50! for a beam withL
5110 cm,a56 mm, b532 mm. A 42-g superball impacts normally on th
beam atx555 cm, x590 cm, or x5103 cm. The ball is incident in the
positive y direction at an initial speedv151.0 ms21 and rebounds in the
negativey direction at speedv25ev1 . The modeled impact duration i
approximately 4.2 ms for each of the three impacts.
697 Am. J. Phys., Vol. 67, No. 8, August 1999
-
he
t-

al,
g

the
he

-

t
m
e

d
s

that the beam mass is less than the actual mass and thaf is
less than 0.6. The problem with the rigid body model is th
there is no solution of Eq.~11! where e remains constan
over the central section of the beam. A rigid body soluti
could be ‘‘forced’’ to fit the data iff is allowed to vary with
x, but the flexible beam solution is obviously superior. Ne
ertheless, a ‘‘forced’’ fit provides a valid measure of th
fractional energy loss,f, consistent with the conservatio
equations. The fractional energy loss is about 0.6 in
middle of the 60-cm free beam and also atx53.8 cm and
x556.2 cm, but it is different at other points along the bea

A much better rigid body fit can be obtained for theL
530-cm free beam since the propagation time of an impu
along the beam is then comparable to the duration of
impulse. A good fit is obtained by assuming that the be
mass is its actual mass and thatf 50.2, indicating that the
ball loss is the main energy loss and that the fractional
ergy loss is less than that for an impact on a hard surfa
This fit is shown by the dashed curve for the 30-cm fr
beam. The solid curve is the solution of Eqs.~2! and~3! with
a correction factor of 0.85. An even better fit is obtained
the correction factor is changed to 0.89, in which case i
almost identical to the rigid body solution. This correctio
factor is consistent with the fact that the loss fractionf 51
2e250.2. One can conclude from these data that the ri
body approximation yields reliable results only if the dur
tion of the impulse is longer than the vibration period of t
fundamental mode of the freely supported beam.

VIII. ENERGY BALANCE

The results shown in Fig. 8 highlight a significant diffe
ence between the flexible and rigid body models of a be
If one end of a beam is in motion while the other end is
rest, then the linear and angular velocities of the beam
not well defined. Spatially averaged linear and angular
locities can be defined, but these averages contain ti
varying vibrational components that are not easily dist
guished from the time-independent components until w
after the collision is over. In the ideal case of a lossle
freely supported beam, and at times well after the collisi
each point in the beam will then have a well-defined tim
average velocity or dc component, and a well-defined vib
tional or ac component. The dc components must obey
conservation equations for linear and angular moment
and the system as a whole must conserve energy, as
scribed by the rigid body relations in Sec. IV.

Experimentally, it is observed thate is independent of the
impact parameter for impacts sufficiently well removed fro
either end of the beam. Under these conditions, and for
given freely supported beam, it can be seen from~8! and~9!
thatVc.m. is independent ofb andv is directly proportional to
b. Equation~10! indicates that asb increases,Ec must de-
crease by the same amount as the rotational energy incre
in order to conserve energy. The distribution of the init
energy for an impact on theL5110-cm, a56-mm free
beam, is shown in Figs. 9 and 10 for impacts atx555 cm
andx590 cm, respectively. The curve labeled ‘‘Ball PE’’ i
the energy stored in the ball as a result of its compress
plus the energy dissipated in the ball as a result of hyster
losses. The ‘‘Beam KE’’ is the total instantaneous kine
energy of all beam segments. The ‘‘Beam PE’’ is the str
energy arising from beam bending and is given by12
697Rod Cross
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dx. ~13!

Most of the initial energy of the ball is rapidly converted
potential energy of the ball as a result of its compression.
the ball expands, some of this energy is dissipated in the
and the rest is distributed as shown in Figs. 9 and 10. I
coincidental that the energy dissipated in the ball is alm
identical to the kinetic energy of the ball after the collisio
For an impact at the center of the beam, the beam rec
with a time-averaged stored potential energy slightly sma
than the time-averaged kinetic energy. For the impact a
cm, the ball rebounds with almost the same speed as
impact at the center, but the kinetic energy transferred to
beam is increased, and the stored PE in the beam is
creased, as expected from the conservation equations
least that is the situation that evolves well after the collis
is over.

As shown in Figs. 9 and 10, the distribution of ener
between ‘‘Beam KE’’ and ‘‘Beam PE’’ does not depend si
nificantly on the impact point during the collision itself. Co
sequently, the ball rebounds with essentially the same sp
regardless of the impact location, while the beam dynam
evolves with time, and continues to evolve after the ball h
lost contact with the beam. After several transits of the i
pulse up and down the beam, it is then possible to inter
the motion of the beam in terms of rigid body dynamics. T

Fig. 9. The distribution of energy following an impact of the superball
theL5110-cm,a56-mm freely supported beam for an impact in the cen
of the beam.

Fig. 10. The distribution of energy following an impact of the superball
theL5110-cm,a56-mm freely supported beam for an impact 20 cm fro
one end of the beam.
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mode frequencies and node locations in Figs. 9 and 10
consistent with beam theory~more obviously when the cal
culations are extended over several fundamental vibra
periods! but the frequencies appear to be twice as high si
the vibrational energy components are a maximum tw
each cycle.

The vibrational energy stored in the beam can be ca
lated for each impact point using Eq.~13!, but this is time
consuming since the calculations must extend over sev
fundamental vibration periods to determine the tim
averaged vibrational energy. A simpler approach is to in
grate the flexible beam equations only during the impact
riod to determinee5v2 /v1 and the energy dissipated in th
ball, and then use the rigid body Eqs.~11! and~12! to deter-
mine the fractional energy loss,f. The result for a tennis
racket is described in Sec. IX.

IX. RELEVANCE TO A REAL TENNIS RACKET

The beam parameters chosen for this experiment do
accurately model the parameters of real bats or rackets,
they are not wildly different. Nevertheless, it is of interest
consider more realistic parameters. Consider, for examp
graphite/epoxy composite tennis racket of lengthL572 cm,
massM5320 g, and thicknessa520 mm. The fundamenta
vibration frequency of such a racket, when freely suspen
by a length of string, is typically about 125 Hz~period T
58 ms!. Despite the fact that the racket head is round,
frame is hollow, and the ball impacts on almost massl
strings, the vibration modes and the node locations of suc
racket can be accurately modeled by assuming that the ra
behaves as a uniform beam. The zero frequency dynamic
the racket~i.e., its rotation, translation, and the location
the center of percussion! can also be modeled in terms of
uniform beam, provided the ball impacts the strings on
long axis through the handle. An off-axis impact will cau
the racket to rotate about the long axis, in which case
relevant moment of inertia is considerably larger than tha
a uniform, rectangular cross-section beam of the same m
length, and thickness as the racket. From Eq.~5!, the relevant
value of E/r for the racket is 13107 N m kg21. This value
of E/r is about a factor of 6 smaller than that observed fo
straight graphite composite tube, and reflects the fact that
racket is loaded by the strings, the grip, a heavy coat of pa
and other reinforcement material, and also indicates that
carbon fibers are not all aligned in the same direction, but
woven into a braided cloth.

The rules of tennis specify that a tennis ball must hav
mass of 57 g, a spring constantk;23104 N m21, and a
coefficient of restitution~COR! of 0.74 when dropped from a
height of 100 in. onto a concrete slab, with only small var
tions permitted. In this case, the ACOR is the same as
COR since the slab remains at rest. The ball therefore lo
about 45% of its initial energy when dropped onto a concr
slab. In normal play, the ball does not impact on concrete
even on the racket frame. The impact is cushioned by
strings, with the result that the ball compression is redu
and hence the ball loss is less than that for an impact
concrete. When a ball is dropped onto the strings, and
head is clamped, the ball rebounds to about 70%–80% o
drop height, depending on the string tension, the ball spe
and the condition of the ball. Essentially all of the ener
absorbed by the strings is given back to the ball.13 In the
calculations presented below, it is assumed that the bou

r
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height is 72%, corresponding either to a ‘‘used’’ ball impa
ing at low speed or a new ball impacting at relatively hi
speed. The hysteresis losses can be modeled, as desc
above, usingk1523104 N m21 ande250.72 ore50.85, in
which casem51 andn51.768. The relevant compressio
and energy loss when the racket head is free to reco
governed by the relationsF5k1(yb2yn) during the com-
pression phase andF5k2(yb2yn)1.768 during the expansion
phase.

The impact force acts via the strings over the whole rac
head, but not instantaneously since there is a finite prop
tion delay, of order 0.5 ms, through the strings. It is assum
in the calculations presented below that the ball impacts
only one of theN segments, since the force is transmitted
its nearest neighbors, with a time delay comparable with
through the strings, as a result of beam bending. Fur
details of the collision would require a two-dimension
model of the racket head to take into account the tw
dimensional nature of wave propagation through the stri
as well as the frame.

Calculations of the ACOR for the above racket and b
parameters are shown in Fig. 11, for conditions where
racket is~a! freely suspended or~b! rigidly clamped over a
10 cm length at the end of the handle or~c! pivoted about an
axis through the end of the handle. The length of
clamped racket is reduced, by the clamp, to 62 cm. In pr
tice, the hand does not act as a rigid clamp, since the ra
and the hand pivot about an axis through the wrist.7 The
boundary conditions at a pivot end are given byy50 and
]2y/]x250 since the displacement and the bending mom
are both zero at a pivot~or ‘‘pinned’’ ! joint.

The racket results are surprising since the ACOR near
center of the racket is strongly affected by wave reflect
from the clamped end, but not by reflections from the sa
end when that end is free or pivoted. This result is not sim
due to the fact that the clamped racket is 10 cm shorter t
the other rackets. The clamped racket has almost the s
length and mass as the 60-cm aluminum beam shown in
6. The difference is that the racket is slightly stiffer, having
higher fundamental vibration frequency~125 Hz for the free
racket and 87 Hz for the free aluminum beam! and the ball
contact time is slightly longer~6.2 ms for the tennis ball and

Fig. 11. Theoretical estimates of the ACOR for a graphite tennis racke
length 72 cm, mass 320 g, and thickness 20 mm. The tip of the racke
x50, is freely supported. The handle is either freely supported, pivote
x572 cm, or rigidly clamped betweenx562 cm andx572 cm. Also shown
is a rigid body solution for the freely suspended racket, withf 50.3. The
racket strings extend typically fromx51 cm to aboutx534 cm.
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4.2 ms for the superball!. The reflected pulse from the
clamped end of the racket catches up with the ball as i
about to rebound, and ejects the ball at a relatively h
speed. Furthermore, the contact duration is extended to
ms by this effect. In the case of the free or pivoted rack
reflections from either end take slightly longer to reach
ball due to the additional 10 cm racket length. When t
reflection does reach the ball, the racket moves away fr
the ball, with the result that the contact time is reduced
about 5.2 ms, compared with 5.5 ms for an impact on a ri
surface. The dynamics are illustrated in Figs. 12 and
showing snapshots of the racket at 2-ms intervals after
initial impact.

The ‘‘slingshot’’ effect of the reflected pulse from
clamped end is mainly of academic interest since the h
and wrist act more like a pivot joint than a rigid clamp an
since the ball normally impacts in a region about 10–25
from the tip of the racket, rather than near the center of
racket ~i.e., about 36 cm from the tip! or near the clamped
end. Consequently, the main significance of the res
shown in Fig. 11 is that, for an impact on the strings, t
behavior of the ball is almost totally independent of t
method of support of the handle. There is only a margi
difference in the ACOR, about 20–30 cm from the tip of t
racket, between a freely supported racket and one tha
pivoted at the end of the handle.

Also shown in Fig. 11 is a rigid body calculation for th
racket, assuming that it is freely suspended and that the f
tional energy lossf 50.3. This value off was chosen to give
a reasonable fit to the flexible racket solutions. The fit agr
moderately well with the flexible racket results, except ne
the tip and the throat of the racket since vibration losses

of
at
at

Fig. 12. Snapshots of the racket at 2-ms time intervals when the hand
pivoted at the end of the handle and the ball impacts atx536 cm atv1

51.0 ms21.

Fig. 13. Snapshots of the racket at 2-ms time intervals when the hand
clamped betweenx562 cm and x572 cm and the ball impacts atx
531 cm atv151.0 ms21.
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to increasef in these locations. A ‘‘forced’’ rigid body fit to
the flexible racket solutions, for an impact on the freely s
pended racket, is shown in Fig. 14. The ball loss due
hysteresis, and the ACOR, were calculated using the flex
beam model. The fractional energy loss,f, was then deter-
mined from Eqs.~11! and ~12!. The translational and rota
tional energies of the racket were determined, from
known value ofe5v2 /v1 , with the aid of Eqs.~8! and ~9!.
The energy stored in racket vibrations, normalized to
initial ball energy, was obtained by subtracting the norm
ized ball loss fromf.

As shown in Fig. 14, the energy dissipated in the bal
actually less than that when the head is rigidly clamped~for
the same incident ball speed! since the racket frame, as we
as the strings, absorbs some of the impact energy. As a
sult, the ball compresses by a smaller amount, and the
teresis loss is reduced. The vibrational energy stored in
racket passes through a broad minimum for an impact at
fundamental vibration node. It is not zero, since other mo
are excited at this location, but the fundamental mode
clearly the most significant. For a uniform beam, the no
of the fundamental mode are located atx/L50.22 andx/L
50.78, or at x516 cm andx556 cm for the L572-cm
racket. For a racket, the fundamental node is close to
middle of the strings. One might therefore expect a sign
cant localized increase in the ACOR for an impact in t
middle of the strings. Such an effect is not observed, des
the reduction in the energy coupled to racket vibrations at
node, since the kinetic energy coupled to the racket pa
through a broad maximum near the node point. This effec
shown in Fig. 15, where the sum of the translational a
rotational energy fraction curves is plotted as a function
the impact point. Alternatively, one can argue that the b
does not ‘‘know’’ that it struck a node until after the coll
sion is over. The impulse must propagate to both ends of
racket and back in order for a node point to be establish

Also shown in Fig. 15 is a plot of the kinetic energy tran
ferred to the handle, for the freely suspended racket. T
result was obtained by summing the kinetic energy of
segments in the last 10 cm of the handle, and recording
maximum value of the kinetic energy during the 30-ms p

Fig. 14. A forced rigid body fit to the flexible beam solutions for the free
suspended graphite racket. The distribution of the initial ball energy is p
ted as a function of the impact distance,x, from the tip of the racket. Each
curve is normalized to the initial energy 0.5mbv1

2. The ‘‘loss’’ curve is the
fraction of this energy dissipated in the ball. The ‘‘Vibr’’ curve is the fra
tion stored in racket vibrations. The various energy fractions sum to un
In practice, the only region of interest is 3,x,30 cm, corresponding to an
impact on the strings.
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riod following the impact. The energy stored in the handle
a result of local beam bending was found to be neglib
However, the handle still vibrates after the impact due to
vibrational energy stored in other parts of the racket. It mig
appear from Fig. 15 that, for impacts near the end of
handle, more energy is stored in the handle than in the wh
racket. However, the translational plus rotational ene
curve represents the time average energy, with the vib
tional component removed, whereas the handle energy c
shows the peak energy in the handle, including the vib
tional energy. The most significant feature of the handle
ergy curve is that the handle energy is minimized for
impact in the region from aboutx514 cm to aboutx
521 cm. This can be attributed to the fact that~a! the vibra-
tional energy is minimized for an impact at the fundamen
vibration node~at x516 cm! and~b! the time average kinetic
energy drops to zero at any given point in the handle for
impact at the corresponding center of percussion~COP! on
the strings.6,7 For conjugate points between the end of t
handle and 10 cm from the end of the handle, the co
sponding COP points extend fromx519.4 cm to x
524.0 cm. Consequently, the ‘‘sweet spot’’ zone, represe
ing a region where shock and vibration transferred from
handle to the player are minimized, corresponds to impa
near or between the fundamental node point and the C
points.

Manufacturers have strived for many years to produc
perfectly rigid racket since the vibration losses would then
zero. Modern graphite rackets are certainly much stiffer th
the older generation of wood or aluminum rackets, but th
are not infinitely stiff. In fact, they do not need to be. IfE is
increased by a factor of 3, keeping the racket mass, len
and thickness fixed, the flexible racket solution is alm
identical to the rigid body solution shown in Fig. 11. IfE is
reduced by a factor of 3,e is decreased by about 20% alon
the whole length of the racket. Consequently, only margi
gains can be obtained by increasing the stiffness of mod
rackets.

X. CONCLUSIONS

In this paper, aluminum beams of different length a
thickness were used to simulate the behavior of a ball col

t-

y.

Fig. 15. The sum of the translational and rotational energy fractions in
14 is shown by the dashed curve. The solid curve shows the fraction o
initial ball energy that is transferred to the handle, as a function of
impact distance,x, from the tip of the racket. The node points correspond
nodes of the fundamental mode, and the COP atx524 cm is shown for a
conjugate point at the end of the handle.
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ing with a baseball bat or a tennis racket. It was found t
the apparent coefficient of restitution, for an impact at a
point well removed from either end of the beam, is indep
dent of the impact location or the length of the beam or
method of support at the ends. These results support
often-quoted assumption that the impulsive reaction force
the handle can be neglected. A rigid body model of the c
lision yields results that are, in general, only roughly cons
tent with experimental data or with solutions obtained fo
flexible beam. The rigid body model works best when t
duration of the collision is greater than the vibration peri
of the fundamental mode of the freely supported beam. H
ever, the rigid body model must be supplemented with in
pendent estimates of the energy stored in vibrational mo
The flexible beam model is superior and yields results t
are in remarkably good agreement with experimental data
least for a uniform beam. One can therefore expect tha
extension of the model to treat real, nonuniform bats a
rackets will yield similarly reliable results.

The mechanics of a bat and ball collision can be pictu
in the following simplified terms. During the collision, th
bat bends locally by an amount that is independent of
impact point, provided the impact is not too close to the e
of the bat. The impact generates a pulse that propagate
each end of the bat and returns to the impact point ei
before or after the ball has rebounded, depending on
flexibility of the ball, the flexibility of the bat, and the dis
tance to each end. If the reflected pulses arrive after the
rebounds, then the ball has no way of ‘‘knowing’’ where
landed and the rebound speed is independent of the im
point. Similarly, the beam does not ‘‘know’’ if it was struc
in the middle or at any of the vibration nodes until well aft
the collision is over. After the ball has lost contact with t
bat, the pulse propagates up and down the bat and distrib
the impact energy in a manner that is governed by the c
servation equations for linear and angular momentum or
manner that can be calculated in terms of the normal mo
including the zero frequency modes.5,9 An experimentalist
could measure the amplitudes of the various modes after
collision is over, calculate the energy in the modes, and t
use the conservation equations to calculate the rebo
speed of the ball. However, it would be simpler to meas
the rebound speed directly. In this sense, a rigid body mo
of the collision is of limited use in determining the rebou
speed of the ball.
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APPENDIX

A finite difference form of Eq.~2! can be obtained by
reference to Fig. 16. The beam is approximated asN seg-
ments each of massm, separated by a distances in the x
direction. If thenth segment is displaced in they direction by
an amountyn , then

yn20.58 5~dy/dx!n20.55~yn2yn21!/s

and

yn10.58 5~dy/dx!n10.55~yn112yn!/s.

Hence,
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yn95~d2y/dx2!n5~yn10.58 2yn20.58 !/s

5~yn1122yn1yn21!/s2.

Similarly,

S d4y

dx4D
n

5
yn119 22yn91yn219

s2

5
~yn1224yn1116yn24yn211yn22!

s4 .

The time derivatives can be expressed in an analogous f
using equal increments,Dt, in time. Given the valuesyt21 ,
yt , andyt95(d2y/dt2), thenyt1152yt2yt211(Dt)2yt9 . At
each time step,yt11 is evaluated for each segment, then t
x derivatives are reevaluated prior to the next time st
However, this procedure cannot be applied to the first two
the last two segments at the ends of the beam since tx
derivative at any given segment is expressed in terms of
y displacement of the two segments on either side of
given segment. They displacement of the end segments w
obtained by imposing the relevant boundary conditions
described above. For example, at a free end,y22y15y3

2y25y42y3 . At a clamped end,y15y250. At a pivot
joint, y150 andy25y3/2. These boundary conditions exten
over a small but finite length of the beam and effective
reduce the beam length, especially if the number of segm
is small. Ideally, the boundary conditions apply to only o
point at the very end of the beam. Consequently, a sm
‘‘end correction’’ was used in the numerical solutions b
allowing the numerical beam to be two segments longer t
the actual beam. However, in order to satisfy the ene
conservation equations, it was necessary to assume tha
end segments had zero mass. For the other segmens
5L/(N22) andm5M /(N22). Good agreement with the
analytical eigenmode frequencies was obtained usingN
;40 segments.

The response of a beam to any given impulse consists
theory, of an infinite set of eigenmodes. In principle, nume
cal integration of Eqs.~2! and ~3! would therefore require
infinitesimal time steps to resolve all modes. In practice
was found that time steps of order 10ms provided sufficient
accuracy since the impulse duration, typically about 5 m
was too long to excite modes of frequency greater than ab
300 Hz and since the division of the beam intoN discrete
segments eliminated modes of wavelength shorter than
segment separations. Experimentally, very high frequenc

Fig. 16. Discrete segment model for a uniform beam. The ball exerts a f
F on thenth segment and can be treated as a simple or as a nonlinea
lossy spring.
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modes are of no consequence since they are heavily dam
and since the frequency spectrum of an impulse of duratiot
extends only to aboutf 51/t.
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TO FATHOM OR TO USE

By 1896 the field of electrical engineering had split from physics. Physicists certainly failed to
heed this author’s advice, and now must attempt to fathom four subtle and mighty forces, not two.

‘‘ INTRODUCTION
The great forces of the world are invisible and impalpable; we cannot grasp or handle them;

and though they are real enough they have the appearance of being very unreal. Electricity and
Gravity are as subtle as they are mighty: they elude the eye and hand of the most skillful philoso-
pher. In view of this, it is well for the average man not to try to fathom, too deeply, the science of
either; neither Edison or Tesla have done that yet.

To take the machines and appliances as they are ‘‘on the market’’ and to acquire the skill to
operate them, is the longest step toward the reason for doing it, and why the desired results
follow—thus working on the natural method of judging causes from effects.’’

N. Hawkins,New Catechism of Electricitiy: A Practical Treatise~Theo. Audel & Co., New York, 1896!, p. xv.
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