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In this lab, you are going to investigate the way the Boltzmann and Saha equations influence
the stellar spectra that we observe. In particular, we want to know why absorption lines of
particular elements appear in the atmospheres of some stars and not other stars of different
temperatures.

The Harvard spectral sequence, devised by Annie Jump Cannon, arranges stars based on
their spectral characteristics. The final sequence is illustrated in Figure 1. It turns out to
be an ordering in temperature, with the hottest stars (O and B) at the top and the coolest
stars (K and M) at the bottom.

Inspection of this figure shows that the strengths of different lines varies smoothly between
the classes. The calcium K line, on the left of the figure, is almost absent in B stars, then
increases in strength to the F and G stars. The hydrogen lines, on the other hand, increase
in strength from B to A stars, then decrease. We are going to show why the hydrogen lines
are strongest in A stars.

1 The Saha and Boltzmann equations

Recall that the absorption lines we see in stellar atmospheres arise when electrons make
transitions between two atomic energy levels. In order to understand what absorption lines
we will see in spectra, we have to calculate how many atoms are in each state, for which
we use the Saha and Boltzmann equations

1.1 The Boltzmann equation

The Boltzmann equation is used to calculate the distribution of electrons among the atomic
orbitals in a single ionisation state, e.g. singly ionised helium He+ (which astronomers
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Figure 1: Representative stellar spectra illustrating the Harvard spectral sequence. The
spectra are shown positively, with absorption lines dark on a bright background.
From Novotny (1973).

denote He II), or neutral hydrogen (H I). The Boltzmann equation assumes the gas is in
local thermodynamic equilibrium. Orbitals of higher energy are less likely to be occupied
by electrons.

At temperature T , the populations n1 and n2 of any two energy levels are
n2
n1

=
g2
g1
e−(E2−E1)/kT (1)

where g1 and g2 are the statistical weights of the two levels.

In general, the number of electrons in any energy level s of an ionisation state i is given
by

ns
Ni

=
gs
Zi
e−(Es−E1)/kT (2)

where Ni is the total number of particles in all energy levels in ionisation state i, Ni =∑
s ns, and Zi is the partition function (see below).

1.2 The Saha equation

As the temperature increases, however, atoms will start becoming ionised. We use the
Saha equation to calculate the relative number of atoms in different states of ionisation.
The ratio of the number of atoms in ionisation state (i + 1) to the number of atoms in
state i is

Ni+1

Ni
=

2Zi+1

neZi

(
2πmekT

h2

)3/2

e−ξi/kT (3)

where

• Ni is the number density of ions in ionisation state i
• ne is the number density of electrons, which is related to the electron pressure via
Pe = nekT

• me the electron mass
• ξi the ionisation energy from the ground state in ionisation state i
• Zi and Zi+1 are the partition functions of ionisation states i and i+1: the weighted

sum of the number of ways the atom can arrange its electrons with the same energy:

Z =
∞∑
s=1

gse
−(Es−E1)/kT (4)
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For the following exercises, some Matlab code has been provided for you. Download
it from eLearning (under “Computer lab 1”), or it is reproduced here. Hints as to
how to start the problem are shown below as MATLAB HINT , if you’re having
problems – but feel free to find your own, better, solution!

2 Exercise 1: The Saha-Boltzmann results for unobtanium

We are going to investigate a hypothetical iron-like element in conditions similar to a
stellar atmosphere;1 This element, which we will call unobtanium (Ub), has the following
properties:

• ionisation energies ξ1 = 7 eV for neutral Ub, ξ2 = 16 eV for Ub+, ξ3 = 31 eV for
Ub2+, and ξ4 = 51 eV for Ub3+.

• excitation energies that increase incrementally by 1 eV: ξs = s−1 eV in each ionisation
state

• statistical weights gs = 1 for all levels s.

Figure 2 shows the energy level diagram for the four ionisation states of Ub.

Figure 2: Energy level diagram for the element unobtanium (Ub), showing the neutral
state (lefthand column, i = 1) and the first three ionization states (i = 2–
4). In astronomical convention the spectra of neutral unobtanium Ub, ionised
unobtanium Ub+ and doubly ionised unobtanium Ub2+ are called Ub I, Ub II
and Ub III respectively.

Your goal is to work out which ions will have significant transitions at which temperatures,
which will mean evaluating the Saha and Boltzmann equations.

1This exercise is based on a lab exercise written by Rob Rutten, from the University of Utrecht,
www.staff.science.uu.nl/∼ rutte101/Exercises.html. He called his element “schadeenium”, after Dutch
solar physicist Aert Schadee, but since that is unpronounceable to non-Dutch speakers, I have called it
“unobtanium”.
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Q1 First, you need to compute the partition function Zi for each ionisation state of
unobtanium. The file partition_Ub.m computes Zi for each of the four ionisation
states:

function z = partition_Ub(T)
keV=8.61734e-5; % Boltzmann’s constant in eV/K
chiion=[7,16,31,51]; % ionisation potentials for Ub

z = [0,0,0,0];
for i=1:4

E = [1:1:chiion(i)]; % energy levels all 1 eV apart
weight = exp(-(E-1)/(keV*T));
z(i) = sum(weight);

end % for i ...
partition_Ub = z;

(Note that because our energy is in eV, we need to use Boltzmann’s constant in eV/K, not
J/K).

Fill in the following table for three different temperatures; the first has been done for you,
as a check.

MATLAB HINT: Create a vector of the temperatures and calculate the partition func-
tion for each one:

T = [5000,10000,20000]; %create a vector of the temperatures
for t = 1:length(T) %for each temperature

Z(:,t) = partition_Ub( T(t) );
end

Zi 5000 K 10,000 K 20,000 K

Z1 1.11

Z2 1.11

Z3 1.11

Z4 1.11

Table 1: Partition function Zi for the four ionisation states of Ub at different temperatures

Note that the partition functions are of order unity and barely sensitive to temperature.
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Q2 Now you need to use equation 1 to compute the Boltzmann population for each
energy level. The file boltzmann_Ub.m calculates the proportion of electrons in level
s for ionisation state i, ns/Ni for unobtanium.

function relnum = boltzmann_Ub(T,i,s)
keV=8.61734e-5; % Boltzmann’s constant in eV/K

z = [0,0,0,0];
z=partition_Ub(T);
relnum = 1/z(i) * exp (-(s-1)/(keV*T));

Use this function to fill in the following table, for neutral unobtanium (ionisation state 1).

MATLAB HINT: This time, you will need to create a vector of energy states S

S = [1,2,3,4,5,6,7,10,15]; %index the different energy levels in Ub

and then loop over each temperature T and each energy state S, and call boltzmann_Ub
to calculate ns/Ni.

for t = 1:length(T) %for each temp
for s = 1:length(S) %for each energy state

nsonNi(s,t) = ...
end

end

ns/N1 5000 K 10,000 K 20,000 K

s = 1 0.90

2 0.09

3 0.01

4 O(−3)

5 O(−4)

6 O(−5)

7 O(−6)

10 -

15 -

Table 2: Level population ns/N1 for unobtanium at different temperatures. The notation
O(−x) stands for order of magnitude 10−x – too small to care about. (Note that levels 10
and 15 do not exist in the neutral atom)
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Note the steep population decay with Es −E1, and that the decay is less steep for higher
temperature.

Which energy level always has the largest population? Why?

I CP1 Tutor’s initials

Q3 Now you need to calculate the proportion of Ub in each ionisation state, Ni/Ntot.
The simplest way to get this ratio is to set N1 to some value (like 1), evaluate the
four next ionisation state populations successively from equation 3, and divide them
by their sum = Ntot in the same scale: examine the function saha_Ub.m.

function saha = saha_Ub(T,pe,ionstage)
% Compute Saha population fraction N_r/N for Unobtanium
% Inputs: temperature, electron pressure, ion stage

keV=8.61734e-5; % Boltzmann’s constant in eV/K
k=1.38065e-23; % Boltzmann’s constant in J/K
h=6.62607e-34; % Planck’s constant in Js
me=9.10938e-31; % electron mass in kg

chiion=[7,16,31,51]; % ionisation potentials for Ub

ne = pe/(k*T);
z=partition_Ub(T);
z = [z 2]; % add estimated 5th value to get Z_4 too
sahaconst=(2.*pi*me*k*T/h^2)^1.5 * 2. / ne;
nion(1) = 1;
for i=1:4

nion(i+1)=nion(i)*sahaconst*z(i+1)/z(i)*exp(-chiion(i)/(keV*T));
end % for i ...
ntotal = sum(nion);
nstagerel = nion ./ ntotal;
saha = nstagerel(ionstage);

Assume Pe = 100 Pa.
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Ni/Ntot ion 5000 K 10,000 K 20,000 K

i=1 Ub 0.91

2 Ub+ 0.09

3 Ub2+ O(−11)

4 Ub3+ O(−36)

Table 3: Population in each ionisation state Ni/Ntot

Note that there are only two ionisation stages significantly present per column. In other
words, at a given temperature we will see lines of only two ionisation stages; the other lines
vanish.

Q4 Finally, find the predicted strength of spectral lines from the neutral and ionised
states of element Ub. Write a function sahabolt_Ub.m(T,pe,i,s) that evaluates
Ns/Ntot for any level s as a function of temperature T and electron pressure Pe. You
can find this by multiplying together your last two functions. Fill in the following
table for the ground state of Ub, s = 1, assuming Pe = 100 Pa again.

N1/Ntot ion 5000 K 10,000 K 20,000 K

i=1 Ub 0.82

2 Ub+ 0.08

3 Ub2+ O(−11)

4 Ub3+ O(−37)

Table 4: Population in N1/Ntot

I CP2 Tutor’s initials
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3 Exercise 2: Payne curves for unobtanium

Q1 Now for each ionisation state i, compute the ground-state population N1/Ntot for a
pressure Pe = 100 Pa as a function of temperature. Use temperatures ranging from
0 to 30,000 K. Plot all four ionisation states on the same graph with different line
styles or colours.

What does this graph tell you about what you would see in the spectra of stars?

I CP3 Tutor’s initials
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4 Discussion

You have just repeated the work of Cecilia Payne at Harvard. In her 1925 thesis2, she
applied the newly derived Saha distribution for different ionisation states of an element to
stellar spectra, and proved that the empirical Harvard classification represents primarily a
temperature scale. The key graph in her thesis (published earlier in Payne 1924) is shown
below in Fig. 3.

Figure 3: Strengths of selected lines along the spectral sequence. Upper panel shows ob-
served line strengths; lower panel shows the Saha-Boltzmann predictions of the
fractional concentration Ns/Ntot for the lower level of the lines indicated in the
upper panel. From Payne (1924).

Her work showed that the great variation in stellar absorption lines was not due to differ-
ing chemical composition, but arose simply because of the different ionisation conditions
in stars of different temperature. She correctly suggested that the proportion of heavy ele-
ments in stars was similar to that on Earth, but that hydrogen and helium are vastly more
abundant (for hydrogen, by a factor of about one million). Her thesis thus established for
the first time that hydrogen is the overwhelming constituent of the stars.

The Ub curves in your plot do indeed resemble Payne’s curves. In order to reproduce her
lower panel in detail, you would have to evaluate the partition functions for the actual
elements that she used and to enter the actual excitation energies of the lower levels of
the lines that she used. More work, but in principle not different from what you have
done for Ub. So, you have confirmed Payne’s conclusion that the Harvard classification of
stellar spectra is primarily an ordering with temperature, controlled by Saha-Boltzmann
population statistics.

2described by Otto Struve as “undoubtedly the most brilliant PhD thesis ever written in astronomy”.
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