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Binary stars

More than half of all stars in the sky are in multiple-star systems, with
two or more stars in orbit around a common centre of mass.

Shortest period: HM Cancri, two white
dwarfs with P = 5.4 minutes,
a = 8REarth
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Binary stars

Longest period: ??
Proxima Cen: P = 500, 000
y
Common proper motion
systems: bound?

Common proper motion pairs found in the SLoWPoKES survey. From
Dhital et al. 2010, AJ 139 2566
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Multiple systems

Multiple star systems are also common, containing three or even more stars.
For example, Castor (α Geminorum), is in fact a sextuple star system,
consisting of an inner pair of binaries, with a third binary orbiting around the
inner pair of binaries. Multiple systems are always hierarchical.
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Other configurations
Other orbits are theoretically possible, e.g. the Lagrange configuration, with
three objects orbiting in an equilateral triangle
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Other configurations

Recently even more bizarre orbits have been found to be stable.

However, it’s hard to see how they could form!
[see www.maths.manchester.ac.uk/~jm/Choreographies/]
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Distribution

The distribution of masses and periods in binaries is very uncertain. The
best guess for stars in the neighbourhood of the Sun is that at least half
have at least one companion.
However, this may not be true for stars much more or less massive than
the Sun: there is evidence that only 40% of M stars have a binary
companion. Conversely, between 70% and 100% of O and B stars appear
to have companions. However, the masses of the companion stars are
strongly skewed towards also being massive: there are few massive stars
with low mass companions.
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Interacting binaries

If the two stars are far enough apart, they will have little or no effect on
each other.
However, if they are close, then stellar evolution can have a major effect
as each star’s radius changes with time.
The observed properties of some binaries are inexplicable without taking
this into account.
e.g. some compact binaries, containing a white dwarf, have orbital
periods P < 2 hours, implying orbital separations a < R�.
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The Algol paradox

e.g. Algol, which consists of a main-sequence B star with M = 3.5M�, plus a
giant K star, with M = 0.81M�.

How can the less massive star be further
advanced in its evolution?
By the end of this section of the course, you
will be able to answer this.
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Gravity in a rotating reference frame: Motivation

from https://www.uwgb.edu/dutchs/EarthSC102Notes/102TheOceans.HTM
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Gravity in a rotating reference frame: Motivation
Object rotating at ω (= stationary in rotating frame):
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Gravity in a rotating reference frame: Motivation
Object rotating at ω (= stationary in rotating frame):
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Gravity in a rotating reference frame: Motivation
Stationary object (= rotating at −ω in rotating frame):
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Gravity in a rotating reference frame: Motivation
Stationary object (= rotating at −ω in rotating frame):

Lecture 11: Binary stars Gravity in a rotating reference frame 15 / 31



Gravity in a rotating reference frame

Consider two stars orbiting their mutual centre of mass in x, y plane
with angular velocity ω1 = v1

a1
, ω2 = v2

a2
, where v1 and a1 are the orbital

speed and distance from the CoM for star 1, etc.

From Kepler’s 3rd law,(
P

2π

)2

=
a3

G(M1 +M2)

where a = a1 + a2.

×a1 a2

M1 M2
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Rotation properties

Centre of mass distances are related by

a1 =
M2

M1 +M2
a, a2 =

M1

M1 +M2
a

so
a1
a2

=
M2

M1

(simple CoM arguments)
velocities: vi = 2πai

P for each star

×a1 a2

M1 M2
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Gravity in a rotating reference frame

We choose a rotating coordinate frame with period P and the CoM at
the origin; then the stars are at rest at −a1 and a2.
We introduce a centrifugal force (“push”) to balance the mutual
gravitational force (“pull”).

The centrifugal force on a particle
with mass m at a distance r from
the origin is

Fc = mω2rr̂

in the outward radial direction.

M1 M2a1 a2+
centre of mass

s2s1 r

m

a

θ

y

x
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Potential energy

Now look at the gravitational potential energy: the work done in moving
a particle from r =∞ to r from a mass M is

Ug =

∫ ∞
r

G
Mm

r2
dr = −GMm

r

where we have assumed Ug goes to zero at infinity. We need to introduce
a fictitious “centrifugal potential energy”, setting ∆Uc to be the work
done in moving from ri to rf :

∆Uc = Uf − Ui = −
∫ ri

rf

mω2r dr = −1

2
mω2(r2f − r2i )

Since our choice of zero-point is arbitrary, set Uc = 0 at r = 0, so

Uc = −1

2
mω2r2
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Potential energy

So for a particle with test mass m in the plane of the orbit, the effective
potential energy in this frame is

U = −G
(
M1m

s1
+
M2m

s2

)
− 1

2
mω2r2

Divide by the test mass m to obtain the effective gravitational
potential, Φ:

Φ = −G
(
M1

s1
+
M2

s2

)
− 1

2
ω2r2

the effective potential energy per unit mass.
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Potential energy

Note that

s21 = a21 + r2 + 2a1r cos θ

s22 = a22 + r2 − 2a2r cos θ

and from Kepler’s laws,

ω2 =

(
2π

P

)2

=
G(M1 +M2)

a3

M1 M2a1 a2+
centre of mass

s2s1 r

m

a

θ

y

x
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Lagrange points

We can now evaluate the effective gravitational potential Φ at every
point in the orbital plane.
Along the x-axis, the potential has three peaks.
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Lagrange points

Recall that the x-component of the force on a small test mass is

Fx = −dU
dx

= −mdΦ

dx

The three peaks are Lagrange points, where there is no force on the test
mass (dΦ/dx = 0).
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Equipotential surfaces

Plotting Φ at every point in the orbital plane defines equipotential
surfaces, which share the same value of Φ.

L3 L1 L2

L4

L5

M1 M2
×
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Equipotential surfaces

Since the force is perpendicular to these lines, equipotential surfaces are
level surfaces for stars. If a star changes its radius, it will expand to fill
successively larger equipotential surfaces.
Near to each star, these surfaces are nearly spherical and centred on each
mass. Farther away, the surfaces distort into tear-drop shapes, until they
touch at the inner Lagrange point L1. Still further away, the surfaces
become a dumbbell shape surrounding both stars.

Lecture 11: Binary stars Gravity in a rotating reference frame 25 / 31



Roche lobes

The tear-drop shaped regions of influence around each star are called
Roche lobes.
The size of the Roche lobes depends on the mass ratio q = M2/M1 and
the semi-major axis a.
The relative size of the two Roche lobes depends only on the mass ratio.
Paczyński (1967) found a useful approximation for the radius of the
Roche lobe of the secondary star

RL2 = 0.46a

(
M2

M1 +M2

)1/3

which is accurate to within 2% provided q < 0.8; this condition typically
holds in e.g. X-ray binaries.
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Roche lobes

Keep in mind that equipotentials are defined in three dimensions, so
Roche lobes are three-dimensional. Roche surfaces exist for any pair of
stars; they define the region where each star’s gravity is dominant.
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Lagrange points

The five points labelled L1–L5 are the Lagrange points. These are the
five places in the vicinity of two large orbiting masses where a small
body can orbit at a fixed distance from the larger masses.
L1, L2 and L3 lie on the stars’ line of centres, and are points of unstable
equilibrium (saddle points of the potential).

L4 and L5 are local maxima, and hence
unstable. However, for particular mass
ranges of the large bodies, small objects
will orbit around the L4 and L5 points.

L3 L1 L2

L4

L5

M1 M2
×
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Lagrange points

Location of the Trojan asteroids in the Jupiter-Sun system, from http://cseligman.com/text/asteroids/trojan.htm
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Lagrange points

First Earth Trojan asteroid, discovered by the WISE satellite
http://www.nasa.gov/mission_pages/WISE/news/wise20110727.html
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Next lecture

Lab 3 on Friday in SNH Learning Studio: WTTS evolution of massive
stars (also at 10am today)

then
Next lecture: Accretion

Classes of binary stars
Accretion energy
The Eddington limit
Accretion disks
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