Lecture 2

Thermal expansion and contraction

Pre-reading: §17.4

How does a change in temperature affect the dimensions of a system?

Linear expansion

Most materials expand when their temperatures increase.

The increase in length is found to be proportional to the *temperature increase*, and to the *length* of the object:

$$\Delta L = \alpha L_o \Delta T$$

Linear expansion

α is the coefficient of linear expansion.
Units: K⁻¹, °C⁻¹

Table 17.1 Coefficients of Linear Expansion

Material	$\alpha [\mathrm{K}^{-1} \mathrm{or} (\mathrm{C}^{\circ})^{-1}]$
Aluminum	$2.4 imes10^{-5}$
Brass	$2.0 imes10^{-5}$
Copper	$1.7 imes10^{-5}$
Glass	$0.4 - 0.9 imes 10^{-5}$
Invar (nickel–iron alloy)	$0.09 imes10^{-5}$
Quartz (fused)	$0.04 imes10^{-5}$
Stee1	$1.2 imes10^{-5}$

Why do solids expand?

Average distance between atoms . . U, F_r Force . . . Potential energy For $r < r_0$, $F_r > 0$; the force between molecules is repulsive. For $r > r_0$, $F_r < 0$; the force between molecules is attractive. r_0 . . . U_0

KJF §18.2

A metal disc with a hole in it is heated.

Will the diameter of the hole(a) increase,(b) decrease or(c) not change?

Volume expansion

Similarly, an increase in temperature causes an increase in *volume* for both solids and liquids.

You have enough money to buy 10 L of petrol. When should you buy it?

(a) 2 pm(b) 2 am

When a bimetallic strip is heated and cooled, it behaves as in the following diagram. Which substance has the larger coefficient of expansion?

(a) A (b) B

Thermal expansion of water

Water has an anomalous property: between 0 °C and 4 °C its coefficient of expansion is *negative*.

KJF §17.4

Consequence: lakes freeze from the top down

- Above 4 °C water cools at surface and sinks (greater density)
- Below 4 °C, water cools but stays at surface
- Water at bottom stays warmer.
- Below 0 °C ice forms; ice is also less dense than water.
- Life can remain alive under the ice.

Problem

A surveyor uses a steel measuring tape that is exactly 50.000 m at a temperature of 20 °C.

- a) What is the length on a hot summer day when the temperature is 35 °C? ($\alpha_{steel} = 1.2 \times 10^{-5} \text{ K}^{-1}$)
- b) On this day, when the tape reads 35.794 m, what is the true distance?

Problem

A petrol tanker loads 40,000 L of fuel in Darwin and drives it to Sydney, where the temperature is 25° lower. How many litres of petrol does he deliver?

$$\beta_{\text{petrol}} = 9.5 \times 10^{-4} \text{ K}^{-1} \text{ and } \alpha_{\text{steel}} = 1.2 \times 10^{-5} \text{ K}^{-1}$$

KJF §17.3

Next lecture

Phase change and heat capacity

Read: KJF §17.6, 18.4