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Conventional optical instruments make use of light that is transmitted between differ- 
ent locations in the form of beams that are collimated, relayed, focused, or scanned by 
mirrors, lenses, and prisms. Optical beams diffract and broaden, but they can be 
refocused by the use of lenses and mirrors. Although such beams are easily obstructed 
or scattered by various objects, this form of free-space transmission of light is the basis 
of most optical systems. There is, however, a relatively new technology for transmitting 
light through dielectric conduits, guided-wave optics. It has been developed to provide 
long-distance light transmission without the use of relay lenses. Guided-wave optics has 
important applications in directing light to awkward places, in establishing secure 
communications, and in the fabrication of miniaturized optical and optoelectronic 
devices requiring the confinement of light. 

The basic concept of optical confinement is quite simple. A medium of one 
refractive index imbedded in a medium of lower refractive index acts as a light “trap” 
within which optical rays remain confined by multiple total internal reflections at the 
boundaries. Because this effect facilitates the confinement of light generated inside a 
medium of high refractive index (see Exercise 1.2-6), it can be exploited in making light 
conduits-guides that transport light from one location to another. An optical wave- 
guide is a light conduit consisting of a slab, strip, or cylinder of dielectric material 
surrounded by another dielectric material of lower refractive index (Fig. 7.0-l). The 
light is transported through the inner medium without radiating into the surrounding 
medium. The most widely used of these waveguides is the optical fiber, which is made 
of two concentric cylinders of low-loss dielectric material such as glass (see Chap. 8). 

Integrated optics is the technology of integrating various optical devices and compo- 
nents for the generation, focusing, splitting, combining, isolation, polarization, cou- 
pling, switching, modulation and detection of light, all on a single substrate (chip). 
Optical waveguides provide the connections between these components. Such chips 
(Fig. 7.0-2) are optical versions of electronic integrated circuits. Integrated optics has as 
its goal the miniaturization of optics in much the same way that integrated circuits have 
miniaturized electronics. 

(a) fb) tc) 

Figure 7.0-l Optical waveguides: (a) slab; (b) strip; (c) fiber. 
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Figure 7.0-2 An example of an integrated-optic device used as an optical receiver/transmitter. 
Received light is coupled into a waveguide and directed to a photodiode where it is detected. 
Light from a laser is guided, modulated, and coupled into a fiber. 

The basic theory of optical waveguides is presented in this and the following 
chapters. This chapter deals with rectangular waveguides which are used extensively in 
integrated optics. Cylindrical waveguides, which are used to make optical fibers, are the 
subject of Chap. 8. Integrated-optic devices (such as semiconductor lasers and detec- 
tors, modulators, and switches) are considered in the chapters that deal specifically 
with those devices. Fiber-optic communication systems are discussed in detail in 
Chap. 22. 

7.1 PLANAR-MIRROR WAVEGUIDES 

In this section we examine wave propagation in a waveguide made of two parallel 
infinite planar mirrors separated by a distance d (Fig. 7.1-1). The mirrors are assumed 
ideal; i.e., they reflect light without loss. A ray of light making an angle 19 with the 
mirrors (say in the y-z plane) reflects and bounces between the mirrors without loss of 
energy. The ray is thus guided along the z direction. This seemingly perfect waveguide 
is not used in practical applications, mainly because of the difficulty and cost of 
fabricating low-loss mirrors. Nevertheless, this section is devoted to the study of this 
simple waveguide as a pedagogical introduction to the dielectric waveguide to be 

Mirror 

Figure 7.1-l Planar-mirror waveguide. 
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examined subsequently in Sec. 7.2 and to the optical resonator, which is the subject of 
Chap. 9. 

Waveguide Modes 
The ray-optics picture of light guidance by multiple reflections does not explain a 
number of important effects that require the use of electromagnetic theory. A simple 
approach to carrying out an electromagnetic analysis is to associate with each optical 
ray a transverse electromagnetic (TEM) plane wave. The total electromagnetic field is 
the sum of these plane waves. 

Consider a monochromatic TEM plane wave of wavelength h = ho/n, wavenumber 
k = nk,, and phase velocity c = c,/n, where n is the refractive index of the medium 
between the mirrors. The wave is polarized in the x direction and its wavevector lies in 
the y-z plane at an angle 8 with the z axis (Fig. 7.1-1). Like the optical ray, the wave 
reflects from the upper mirror, travels at an angle - 8, reflects from the lower mirror, 
and travels once more at an angle 0, and so on. Since the electric field is parallel to the 
mirror, each reflection is accompanied by a phase shift 7r, but the amplitude and 
polarization are not changed. The 7r phase shift ensures that the sum of each wave and 
its own reflection vanishes so that the total field is zero at the mirrors. At each point 
within the waveguide we have TEM waves traveling in the upward direction at an angle 
19 and others traveling in the downward direction at an angle -8; all waves are 
polarized in the x direction. 

We now impose a self-consistency condition by requiring that as the wave reflects 
twice, it reproduces itself [see Fig. 7.1-2(a)], so that we have only two distinct plane 
waves. Fields that satisfy this condition are called eigenmodes or simply modes of the 
waveguide (see Appendix C). Modes are fields that maintain the same transverse 
distribution and polarization at all distances along the waveguide axis. We shall see that 
self-consistency guarantees this shape invariance. In reference to Fig. 7.1-2, the phase 
shift encountered by the original wave in traveling from A to B must be equal to, or 

(a) 

(bl 

Figure 7.1-2 (a) Condition of self-consistency: as a wave reflects twice it duplicates itself. 
(b) At angles for which self-consistency is satisfied, the two waves interfere and create a pattern 
that does not change with z. 
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different by an integer multiple of 2~, from that encountered when the wave reflects, 
travels from A to C, and reflects once more. Accounting for a phase shift of 7r at each 
reflection, we have 27rAC/h - 27~ - ~T~AB/A = 2rq, where q = 0, 1,2,. . . . Since -- 
AC - AB = 2d sin 8, where d is the distance between the mirrors, 2T(2d sin 8)/A = 
2n(q + l), and 

where m = q + 1. The self-consistency 
bounce angles 8 = t9, satisfying 

27T 
h2dsin 8 = 2rm, ??I = 1,2,..., 

condition is therefore satisfied only for certain 

(7.1-1) 

A 
sin em = mz, m = 1,2,... . 

I I 

(7.1-2) 
Bounce Angles 

Each integer m corresponds to a bounce angle 8,, and the corresponding field is called 
the mth mode. The m = 1 mode has the smallest angle 8, = sin-‘(h/2d); modes with 
larger m are composed of more oblique plane-wave components. 

When the self-consistency condition is satisfied, the phases of the upward and 
downward plane waves at points on the z axis differ by half the round-trip phase shift 
q7r, q = 0, 1, . . . , or (m - 1)7r, m = 1,2,. . . , so that they add for odd m and subtract 
for even m. 

Since the y component of the propagation constant is k, = nk, sin 0, it is quantized 
to the values k,,,, = nk, sin 8, = (2r/h) sin t9,. Using (7.1-2), we obtain 

7T 
El 

k w =m--, 
d 

m = 1,2,3 ,..., (7.1-3) 
Transverse Component 

of the Wavevector 

so that the k,, are spaced by r/d. Equation (7.1-3) states that the phase shift 
encountered when a wave travels a distance 2d (one round trip) in the y direction, 
with propagation constant kymr must be a multiple of 2~. 

Propagation Constants 
The guided wave is composed of two distinct plane waves traveling at angles f 0 with 
the z axis in the y-z plane. Their wavevectors have components (0, k,, k,) and 
(0, - k,, k,). Their sum or difference therefore varies with z as exp( -jk,z), so that 
the propagation constant of the guided wave is p = k, = k cos 8. Thus p is quantized 
to the values pm = k cos 8,, from which pm 2 = k2(1 - sin20,). Using (7.1-2), we obtain 

m27r2 
&,=k2- d2. (7.1-4) 

Propagation Constants 

Higher-order (more oblique) modes travel with smaller propagation constants. The 
values of 8,, kym, and pm for the different modes are illustrated in Fig. 7.1-3. 

Field Distributions 
The complex amplitude of the total field in the waveguide is the superposition of the 
two bouncing TEM plane waves. If A, exp( -jk ymy - jpmz> is the upward wave, then 
&(m-l)VA m  exp( +jk ym y - jpmz) must be the downward wave [at y = 0, the two waves 
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e 

k, = nk,sinfl 

% 

0 
0 fl =nk,cosO 

Figure 7.1-3 The bounce angles 6, and the wavevector components of the modes of a 
planar-mirror waveguide (indicated by dots). The transverse components k,, = k sin 8, are 
spaced uniformly at multiples of r/d, but the bounce angles fJm and the propagation constants 
Pm are not equally spaced. Mode m = 1 has the smallest bounce angle and the largest 
propagation constant. 

differ by a phase shift (m - l)~]. There are therefore symmetric modes, for which the 
two plane-wave components are added, and antisymmetric modes, for which they are 
subtracted. The total field turns out to be E,(y, z) = 2A, cos(k,,y)exp( -jpmz) for 
odd modes and 2 jA, sin(k,, y ) exp( - jp, z) for even modes. 

Using (7.1-3) we write the complex amplitude of the electric field in the form 

E,(Y, 4 =~,u,(Y) exp( -.iP,+ (7.14 

where 

- cos - m = 1,3,5,... 

U,,(Y) = (7.1-6) 

m = 2,4,6,. . . , 

and a, = J2dA, and jJ2dA,, for odd and even m, respectively. The functions 
u,(y) have been normalized to satisfy 

/ 
d/2 

-d,2~:C~) 4 = 1. (7.1-7) 
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Figure 7.1-4 Field distributions of the modes of a planar-mirror waveguide. 

Thus a, is the amplitude of mode m. It can be shown that the functions u,(y) also 
satisfy 

(7.1-8) 

i.e., they are orthogonal in the [-d/2, d/2] interval. 
The transverse distributions u,(y) are plotted in Fig. 7.1-4. Each mode can be 

viewed as a standing wave in the y direction, traveling in the z direction. Modes of 
large m vary in the transverse plane at a greater rate k, and travel with a smaller 
propagation constant p. The field vanishes at y = +d/2 for all modes, so that the 
boundary conditions at the surface of the mirrors are always satisfied. 

Since we assumed that the bouncing TEM plane wave is polarized in the x 
direction, the total electric field is also in the x direction and the guided wave is a 
transverse-electric (TE) wave. Transverse magnetic (TM) waves may be treated simi- 
larly, as will be discussed later. 

EXERCISE 7.1- 1 

Optical Power. Show that the optical power flow in the z direction associated with the 
TE mode E,(y, z) =a,u,(y)exp( -j&z> is (la,112/277)cos.~m where q = q,/n and 
q. = (p,/E,>1’2 is the impedance of free space. 

Number of Modes 
Since sin 8, = mh/2d, m = 1,2, . . . and for sin 8, < 1, the maximum allowed value 
of m is the greatest integer smaller than (A/2d)-‘, 

(7.1-9) 
Number of Modes 

The symbol F denotes that 2d/h is reduced to the nearest integer. For example, 
when 2d/A = 0.9, 1, or 1.1, A4 = 0, 0, and 1, respectively. Thus A4 is the number of 
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Figure 7.1-5 Number of modes as a function of frequency v. The cutoff frequency is V,in = 
c/2d. As v  increases by c/2d, the number of modes M is incremented by one. 

modes of the waveguide. Light can be transmitted through the waveguide in one, two, 
or many modes. The actual number of modes that carry optical power depends on the 
source of excitation, but the maximum number is M. 

The number of modes increases with increasing ratio of the mirror separation to the 
wavelength. If 2d/h I 1, A4 = 0, indicating that the self-consistency condition cannot 
be met and the waveguide cannot support any modes. The wavelength A,, = 2d is 
called the cutoff wavelength of the waveguide. It is the longest wavelength that can be 
guided by the structure. It corresponds to the cutoff frequency V,in = c/2d, the lowest 
frequency of light that can be guided by the waveguide. If 1 < 2d/A I 2 (i.e., 
d I A < 2d), only one mode is allowed. The structure is said to be a single-mode 
waveguide. If d = 5 pm, for example, the waveguide has a cutoff wavelength A,, = 10 
pm; it supports a single mode for 5 ,um I A < 10 pm, and more modes for A < 5 pm. 
Equation (7.1-9) can also be written in terms of the frequency u, M F v/(c/2d), so 
that the number of modes increases with the frequency V, as illustrated in Fig. 7.1-5. 

Group Velocities 
A pulse of light (wavepacket) of angular frequency centered at o and propagation 
constant /3 travels with a velocity u = do/dp, known as the group velocity (see Sec. 
5.6). The propagation constant of mode m is given by (7.1-4) from which pz = 
(o/cj2 - m2r2/d2, which is an explicit relation between p,,, and o known as the 
dispersion relation. Taking the derivative and assuming that c is independent of o 
(i.e., ignoring dispersion in the waveguide material), we obtain 2P,dp,/do = 20/c2, 
so that do/dp, = c’p,Jw = c2k cos 0,/o = c cos 8,, from which the group velocity 
of mode m is 

(7.1-10) 

Group Velocity 

Thus different modes have different group velocities. More oblique modes travel with a 
smaller group velocity since they are delayed by the longer path of the zigzaging 
process. 

Equation (7.1-10) may also be obtained geometrically by examining the plane wave 
as it bounces between the mirrors and determining the distance advanced in the z 
direction and the time taken by the zigzaging process. For the trip from the bottom 
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Figure 7.1-6 A plane wave bouncing at an angle 8 advances in the z direction a distance 
d cot 6 in a time d csc O/c. The velocity is c cos 0. 

mirror to the top mirror (Fig. 7.1-6) we have 

distance d cot 8 
UC ~ = 

time d csc e/c 
= cc0se. (7.141) 

TM Modes 
The modes considered so far have been TE modes (electric field in the x direction). 
TM modes (magnetic field in the x direction) can also be supported by the mirror 
waveguide. They can be studied by means of a TEM plane wave with the magnetic field 
in the x direction, traveling at an angle 8 and reflecting from the two mirrors (Fig. 
7.1-7). The electric-field complex amplitude then has components in the y and z 
directions. Since the z component is parallel to the mirror, it must behave like the x 
component of the TE mode (i.e., undergo a phase shift rr at each reflection and vanish 
at the mirror). When the self-consistency condition is applied to this component the 
result is mathematically identical to that of the TE case. The angles 8, the transverse 
wavevector components k y, and the propagation constants p of the TM modes 
associated with this component are identical to those of the TE modes. There are 
M = 2d/A TM modes (and a total of 2M modes) supported by the waveguide. 

As previously, the z component of the electric-field complex amplitude of mode m 
is the sum of an upward plane wave A, exp( - jky, y) exp( - jpmz) and a downward 
plane wave e jcrn - ‘)“A m exp( jk,, y ) exp( -j/3, z ), with equal amplitudes and phase shift 
(m - l)~, so that 

am 

I 

2 

$ 

mv 
- cos- 

E,(YJ) = 
d 

d exp(-jp,z), m = 1,3,5 ,... 

2 
am $ 

(7.1-12) 
mv 

- sin- 
d 

d exp(-jp,z), m =2,4,6,..., 

where a, = J2dA, and j\/2dA, for odd and even m, respectively. Since the 
electric-field vector of a TEM plane wave is normal to its direction of propagation, it 

Figure 7.1-7 Polarization: (a) TE; (b) TM. 
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makes an angle r/2 + 8, with the z axis for the upward wave, and 7r/2 - 8, for the 
downward wave. 

The y components of the electric field of these waves are 

A, cot 8, exp( -jk,,y) exp( -jp,z) and eimV A, cot 0, exp( jk,,y) exp( -j&z), 

so that 

I 

2 

$ 

mrY 
am 

d 
cot ‘9, cos- 

E,(Y,z) = 

d exp(-jp,z), m = 1,3,5 ,... 

(7.1-13) 
mrY 

at?l cot 8, sin- d exp(-jp,z), m = 2,4,6 ,... . 

Satisfaction of the boundary conditions is assured because E,(y, z) vanishes at the 
mirrors. The magnetic field component HX( y, z) may be similarly determined by noting 
that the ratio of the electric to the magnetic fields of a TEM wave is the impedance of 
the medium 77. The resultant fields E&y, z), E,( y, z), and H,( y, z) do, of course, 
satisfy Maxwell’s equations. 

Multimode Fields 
It should not be thought that for light to be guided by the mirrors, it must have the 
distribution of one of the modes. In fact, a field satisfying the boundary conditions 

(a) I’ : ; .;; ,..‘. ..,.. ., .: 
;: ., ., ‘, ._’ 
: .” 

I mlk~lllllllll” 

:‘.’ :. 

Y A J"""""""""""'mp"""' 

(bl . 

Figure 7.1-8 Variation of the intensity distribution in the transverse direction y  at different 
axial distances z. (a) The electric-field complex amplitude in mode 1 is E(y, z) = 
u,(y)exp( -j/?,z>, where u,(y) = m cos(ry/d). The intensity does not vary with z. (b) The 
complex amplitude in mode 2 is E(y, z) = +(y)exp(-j&z), where U,(Y) = J2/d sin(2qy/d). 
The intensity does not vary with z. (c) The complex amplitude in a mixture of modes 1 and 2, 
E(y, z) = ur(y)exp( -jp,z) + u*(y) exp(-j&z). Since PI f  &, the intensity distribution 
changes with z. 
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(vanishing at the mirrors) but otherwise having an arbitrary distribution in the trans- 
verse plane can be guided by the waveguide. The optical power, however. is divided 
among the modes. Since different modes travel with different propagation constants 
and different group velocities, the field changes its transverse distribution as it travels 
through the waveguide. Figure 7.1-8 illustrates how the transverse intensity distribution 
of a single mode is invariant to propagation, whereas the multimode distribution varies 
with z. 

An arbitrary field polarized in the x direction and satisfying the boundary condi- 
tions can be written as a weighted superposition of the TE modes, 

E,(YJ) = ? a,~,( Y> exp( -iP,zL 
m=Q 

(7.1-14) 

where a,, the superposition weights, are the amplitudes of the different modes. 

EXERCISE 7.1-2 

Optical Power in a Multimode Field. Show that the optical power flow in the z 
direction associated with the multimode field in (7.1-14) is the sum of the powers 
(l~,12/277)cos 0, carried by each of the modes. 

7.2 PLANAR DIELECTRIC WAVEGUIDES 

A planar dielectric waveguide is a slab of dielectric material surrounded by media of 
lower refractive indices. The light is guided inside the slab by total internal reflection. 
In thin-film devices the slab is called the “film” and the upper and lower media are 
called the “cover” and the “substrate,” respectively. The inner medium and outer 
media may also be called the “core” and the “cladding” of the waveguide, respectively. 
In this section we study the propagation of light in a symmetric planar dielectric 
waveguide made of a slab of width d and refractive index n, surrounded by a cladding 
of smaller refractive index n2, as illustrated in Fig. 7.2-l. All materials are assumed to 
be lossless. 

Light rays making angles 8 with the z axis, in the y-z plane, undergo multiple total 
internal reflections at the slab boundaries, provided that 8 is smaller than the 
complement of the critical angle GC = 7r/2 - sin-‘(n,/n,) = cos-‘(n,/n,) [see page 
11 and Figs. 6.2-3 and 6.2-51. They travel in the z direction by bouncing between the 
slab surfaces without loss of power. Rays making larger angles refract, losing a portion 
of their power at each reflection, and eventually vanish. 

To determine the waveguide modes, a formal approach may be pursued by develop- 
ing solutions to Maxwell’s equations in the inner and outer media with the appropriate 
boundary conditions imposed (see Problem 7.2-4). We shall instead write the solution 
in terms of TEM plane waves bouncing between the surfaces of the slab. By imposing 
the self-consistency condition, we determine the bounce angles of the waveguide 
modes, from which the propagation constants, field distributions, and group velocities 
are determined. The analysis is analogous to that used in the previous section for the 
planar-mirror waveguide. 
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- 

Figure 7.2-l Planar dielectric waveguide. Rays making an angle 8 < gC = COS-‘(~~/IZ~) are 
guided by total internal reflection. 

A. Waveguide Modes 

Assume that the field in the slab is in the form of a monochromatic TEM plane wave of 
wavelength A = ho/n, bouncing back and forth at an angle 8 smaller than the 
complementary critical angle gC. The wave travels with a phase velocity ci = c,/nl, has 
a wavenumber n ,k,, and has wavevector components k, = 0, k, = nlko sin 0, and 
k, = n,ko cos 8. To determine the modes we impose the self-consistency condition that 
a wave reproduces itself after each round trip. 

In one round trip, the twice-reflected wave lags behind the original wave by a 
distance AC - AB = 2d sin 8, as in Fig. 7.1-2. There is also a phase qr introduced by 
each internal reflection at the dielectric boundary (see Sec. 6.2). For self-consistency, 
the phase shift between the two waves must be zero or a multiple of 27r, 

2lr 
T2d sin 8 - 29, = 2rrm, m = O,l, 2,. . . 

or 

2k,d - 2q, = 2rm. (7.2-2) 

The only difference between this condition and the corresponding condition in the 
mirror waveguide, (7.1-l) and (7.1-3), is that the phase shift 7~ introduced by the mirror 
is replaced here by the phase shift qr introduced at the dielectric boundary. 

The reflection phase shift q, is a function of the angle 8. It also depends on the 
polarization of the incident wave, TE or TM. In the TE case (the electric field is in the 
x direction), substituting 8, = 7r/2 - 0 and BC = 7r/2 - gC in (6.2-9) gives 

tan; = (if!& - 1)“2, (7.2-3) 

so that qo, varies from 7~ to 0 as 8 varies from 0 to gC. Rewriting (7.2-1) in the form 
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0 
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A 
2d k- 

sin B, 
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Figure 7.2-2 Graphical solution of (7.2-4) to determine the bounce angles 8, of the modes of a 
planar dielectric waveguide. The RHS and LHS of (7.2-4) are plotted versus sin 8. The intersec- 
tion points, marked by filled circles, determine sin em. Each branch of the tan or cot function in 
the LHS corresponds to a mode. In this plot sin 3, = 8(A/2d) and the number of modes is 
A$ = 9. The open circles mark sin t9, = mh/2d, which provide the bounce angles of the modes 
of a planar-mirror waveguide of the same dimensions. 

tan(rd sin 8/h - m7r/2) = tan(cpJ2) and using (7.2-31, we obtain 

I I 

tan( 7rcsin 8 - -5) = (2 - I)‘/‘. 

1 I Condition 
(TE Modes) 

This is a transcendental equation in one variable, sin 0. Its solutions yield the bounce 
angles 13~ of the modes. A graphical solution is instructive. The right- and left-hand 
sides of (7.2-4) are plotted in Fig. 7.2-2 as functions of sin 8. Solutions are given by the 
intersection points. The right-hand side (RHS), tan(cp,/2), is a monotonic decreasing 
function of sin 8 which reaches 0 when sin 8 = sin gC. The left-hand side (LHS), 
generates two families of curves, tan[(rd/h) sin 01 and cot[(7rd/A) sin 01, when m is 
even and odd, respectively. The intersection points determine the angles 8, of the 
modes. The bounce angles of the modes of a mirror waveguide of mirror separation d 
may be obtained from this diagram by using qr = r or, equivalently, tan(cp,./2) = ~0. 
For comparison, these angles are marked by open circles. 

The angles 8, lie between 0 and gC. They correspond to wavevectors with compo- 
nents (0, nlko sin 8,, nlk, cos 0,). The z components are the propagation constants 

1 pm = nlko ‘OS em* 1 Propagation C~fZZi 

Since cos 8, lies between 1 and cos gC = n,/n,, /3, lies between n2k, and nlk,, as 
illustrated in Fig. 7.2-3. 

The bounce angles 8, and the propagation constants p,,, of TM modes can be found 
by using the same equation (7.2-l), but with the phase shift 9,. given by (6.2-11). Similar 
results are obtained. 
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Figure 7.2-3 The bounce angles 8, and the corresponding components k, and k, of the 
wavevector of the waveguide modes are indicated by dots. The angles 8, lie between 0 and 8,, 
and the propagation constants p, lie between n2k, and nlk,. These results should be compared 
with those shown in Fig. 7.1-3 for the planar-mirror waveguide. 

Number of Modes 
To determine the number of TE modes supported by the dielectric waveguide we 
examine the diagram in Fig. 7.2-2. The abscissa is divided into equal intervals of width 
h/2d, each of which contains a mode marked by a filled circle. This extends over 
angles for which sin 19 I sin gC. The number of TE modes is therefore the smallest 
integer greater than sin 8,/(A/2d), so that 

(7.2-6) 

The symbol A denotes that sin 8,/(A/2d) is increased to the nearest integer. For 
example, if sin gC/(h/2d) = 0.9, 1, or 1.1, M = 1, 2, and 2, respectively. Substituting 
cos gC = n/n1 into (7.2-6), we obtain 

MA 24NA, 
0 

(7.2-7) 
Number of TE Modes 

where 

1 NA= (+n;)1’2 1 (7.2-8) 
Numerical Aperture 

is the numerical aperture of the waveguide (the NA is the sine of the angle of 
acceptance of rays from air into the slab; see Exercise 1.2-5). A similar expression can 
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$6 

Figure 7.2-4 Number of TE modes as a func- 
tion of frequency. Compare with Fig. 7.1-5 for 
the planar-mirror waveguide. 

be obtained for the TM modes. If d/A, = 10, nl = 1.47, and n2 = 1.46, for example, 
then I?~ = 6.7”, NA = 0.171, and M = 4 TE modes. 

When A/2d > sin s, or (2d/h,)NA < 1, only one mode is allowed. The waveguide 
is then a single-mode waveguide. This occurs when the slab is sufficiently thin or the 
wavelength is sufficiently long. Unlike the mirror waveguide, the dielectric waveguide 
has no absolute cutoff wavelength (or cutoff frequency). In a dielectric waveguide there 
is at least one TE mode, since the fundamental mode m = 0 is always allowed. Each of 
the modes m = 1,2,. . . has its own cutoff wavelength, however. 

The number of modes may also be written as a function of frequency, 

NA 

M A (c,/2d)v’ 

The relation is illustrated in Fig. 7.2-4. A4 is incremented by 1 as v increases by 
(c,/2d)/NA. Identical expressions for the number of TM modes may be derived 
similarly. 

EXAMPLE 7.2-l. Modes in an AlGaAs Waveguide. A waveguide is made by sand- 
wiching a layer of AI,Ga,-,As between two layers of A1,Gal-,As. By changing the 
concentrations x, y  of Al in these compounds their refractive indices are controlled. If  x 
and y  are chosen such that at an operating wavelength A, = 0.9 ,um, IZ~ = 3.5, and 
nl - n2 = 0.05, then for a thickness d = 10 pm there are M = 14 TE modes. For 
d < 0.76 pm, only a single mode is allowed. 

B. Field Distributions 

We now determine the field distributions of the TE modes. 

Internal Field 
The field inside the slab is composed of two TEM plane waves traveling at angles 8, 
and - 0, with the z axis with wavevector components (0, f nlko sin 8,, nlko cos 0,). 
They have the same amplitude and a phase shift rnr (half that of a round trip) at the 
center of the slab. The electric-field complex amplitude is therefore E,( y, z> = 



PLANAR DIELECTRIC WAVEGUIDES 253 

amum exp( -.ipmd, where Pm = nlko cos 8, is the propagation constant, aM is a 
constant, 

i 

cos( 2Tymy), 
sin( ,,Ferny), 

m = 0,2,4,... 
- 

m = 1,3,5 ,..., 

d d (7.2-9) z~y~z7 

and h = A,/n,. Note that although the field is harmonic, it does not vanish at the slab 
boundary. As m increases, sin 8, increases, so that higher-order modes vary more 
rapidly with y. 

External Field 
The external field must match the internal field at all boundary points y = &d/2. 
It must therefore vary with z as exp( -jpmz). Substituting E,( y, z) = 

a,u,(y)exp( -jpmz) into the Helmholtz equation (V2 + nzks)E,(y, z) = 0, we obtain 

d2um 
- - dy2 yti’m = 0, 

where 

(7.2-10) 

(7.2-11) 

Since pm > n2k, for guided modes (see Fig. 7.2-3), yz > 0, so that (7.2-10) is satisfied 
by the exponential functions exp( - ym y) and exp(y, y ). Since the field must decay 
away from the slab, we choose exp( - y,y) in the upper medium and exp(y,y) in the 
lower medium, 

exP(-YmY)7 
um(Y> a d 

(7.2-12) 

exP(YmY)~ 
y< -2’ 

The decay rate ym is known as the extinction coefficient. The wave is said to be an 
evanescent wave. Substituting pm = nlko cos 8, and cos iC = n2/nl, into (7.2-ll), we 
obtain 

As the mode number m increases, 13~ increases, and ym decreases. Higher-order 
modes therefore penetrate deeper into the cover and substrate. 

To determine the proportionality constants in (7.2-9) and (7.2-12), we match the 
internal and external fields at y = d/2 and use the normalization 

/m u;(y) dy = 1. 
-03 

(7.2-14) 
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Figure 7.2-5 Field distributions for TE guided modes in a dielectric waveguide. These results 
should be compared with those shown in Fig. 7.1-4 for the planar-mirror waveguide. 

This gives an expression for u,J y) valid for all y. These functions are illustrated in Fig. 
7.2-5. As in the mirror waveguide, all of the u,(y) are orthogonal, i.e., 

Irn u,(Y)u~(Y) dy = 0, 1+ m. (7.245) 
-m 

An arbitrary TE field in the dielectric waveguide can be written as a superposition 
of these modes: 

E&z) = &,~,(~)ex~(-jP,z), 
m 

(7.2-16) 

where U, is the amplitude of mode m. 

EXERCISE 7.2-7 

Confinement Factor. 
the total power 

The power confinement factor is the ratio of power in the slab to 

(7.2-17) 

Derive an expression for I’, as a function of the angle 8, and the ratio d/A. Demonstrate 
that the lowest-order mode (smallest 8,) has the highest power confinement factor. 

The field distributions of the TM modes may be similarly determined (Fig. 7.2-6). 
Since it is parallel to the slab boundary, the z component of the electric field behaves 
similarly to the x component of the TE electric field. The analysis may start by 
determining E,( y, z). Using the properties of the constituent TEM waves, the other 
components E&y, z) and HX( y, z) may readily be determined, as was done for mirror 
waveguides. Alternatively, Maxwell’s equations may be used to determine these fields. 
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(a) (b) 

Figure 7.2-6 (a) TE and (b) TM modes in a dielectric planar waveguide. 

Figure 7.2-7 Comparison between a Gaussian beam in free space and a waveguide mode. 

The field distribution of the lowest-order TE mode (m = 0) is similar in shape to 
that of the Gaussian beam (see Chap. 3). However, unlike the Gaussian beam, guided 
light does not spread in the transverse direction as it propagates in the axial direction 
(see Fig. 7.2-7). I n a waveguide, the tendency of light to diffract is compensated by the 
guiding action of the medium. 

C. Group Velocities 

To determine the group velocity u = &/d/3 for each of the guided modes, we 
examine the dependence of the propagation constant /? on the frequency w by writing 
the self-consistency equation (7.2-2) in terms of j3 and o. Since ki = (w/c~)~ - p2, 
(7.2-2) gives 

2 [i) I 
l/2 

2d w -p2 
Cl 

= 2~p, -I- 2rrm. 

Since cos 0 = /3/(o/ci) and cos e, = n2/nl = cl/c2 (7.2-3) becomes 

(7.2-18) 

tan2 % = p2 - 02/c; 
w2/c; - p2 * (7.2-l 9) 
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Figure 7.2-8 Schematic of the dispersion relation: angular frequency w versus propagation 
constant p, for the different TE modes m = 0, 1,2,. . . . The group velocity is the slope 
u = dw/dp. As w increases the group velocity for each mode decreases from approximately 
c2 = co/n2 to approximately c t = cJy1t. For M B 1, at a fixed o, the group velocities of the 
different modes extend from approximately cl for m = 0 to approximately c2 for m = M. 

Substituting (7.2-19) into (7.2-B) we obtain 

tan2( $[(JE)iQ2]1’2- 7) = ~~~~~~i. (7.2-20) 

The self-consistency condition therefore establishes a relation between p and w, the 
dispersion relation. This relation is plotted schematically in Fig. 7.2-8 for the different 
modes m = 0, 1, . . . . 

The group velocities lie between c1 and c2 (the phase velocities in the slab and 
substrate). At a given w, the lowest-order mode (the least oblique mode, m = 0) travels 
with a group velocity closest to cl. The most oblique mode m = M has a group velocity 
=c 2. This is not surprising. A large portion of the energy carried by the most oblique 
mode travels in the substrate where the velocity is c2. Figure 7.2-9 provides a sketch of 
the group velocities v, as a function of the mode angle 8,. 

Figure 7.2-9 Group velocities of the waveguide modes. The least oblique mode travels with the 
smallest group velocity = cl = c,/11t. The most oblique mode has a group velocity = c2 = c,/n2. 
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EXERCISE 7.2-2 

Transit Time. Show that the maximum disparity between the times 
modes of a planar dielectric waveguide to travel a distance L is 

L 
u7= -A, 

Cl 

taken by the different 

(7.2-21) 

where A = (n, - n,)/nt. I f  n1 - n2 = 0.03, at what distance is the disparity a7 = 1 ns? 
Compare this to the case of a mirror waveguide with n = 1 and d/h = 10. Use (7.1-10, 
(7.1-21, and (7.1-9). 

By taking the total derivative of (7.2-18) with respect to p, we obtain 

Substituting dw/dfl = u, k,/(o/c,) = sin 19, and k,/P = tan 8 and introducing the 
new parameters 

Qr 
Az= ap’ 

8% 
AT= -z, (7.2-22) 

we obtain 

dcot 8 + AZ 

’ = d csc 8/c, + Ar . 
(7.2-23) 

As we recall from (7.1-11) and Fig. 7.1-6 for the planar-mirror waveguide, d cot 8 is 
the distance traveled in the z direction as a ray travels once between the two 
boundaries. This takes a time d csc 8/c,. The ratio d cot t?/(d csc O/c,) = cl cos 8 
yields the group velocity for the mirror waveguide. The expression (7.2-23) for the 
group velocity in a dielectric waveguide indicates that the ray travels an additional 
distance AZ = @J8/3, a trip that lasts a time AT = -dq,/dw. We can think of this as 
an effective penetration of the ray into the cladding, or as an effective lateral shift of 
the ray, as shown in Fig. 7.2-10. The penetration of a ray undergoing total internal 
reflection is known as the Goos-Hiinchen effect (see Problem 6.2-4). Using (7.2-22) it 

Figure 7.2-l 0 A ray model that 
AZ traveled at velocity c,/cos 8. 

replaces the reflection phase shift with an additional distance 
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can be shown that AZ/AT = o/p = c,/cos 8. Therefore, more oblique modes travel 
this lateral distance at a faster speed than less oblique modes. This is responsible for 
the overall group velocity of more oblique modes being larger (contrary to the case of 
the mirror waveguide). 

EXERCISE 7.2-3 

The Asymmetric Planar Waveguide. Examine the TE field in an asymmetric planar 
waveguide consisting of a dielectric slab of width d and refractive index IZ~ placed on a 
substrate of lower refractive index n2 and covered with a medium of refractive index 
n3 < n2 < nl, as illustrated in Fig. 7.2-11. 

(a) Determine an expression for the maximum inclination angle 8 of plane waves undergo- 
ing total internal reflection, and the corresponding numerical aperture NA of the 
waveguide. 

(b) Write an expression for the self-consistency condition, similar to (7.2-4). 
(c) Determine an approximate expression for the number of modes A4 (valid when M is 

very large). 

Figure 7.2-l 1 Asymmetric planar waveguide. 

7.3 TWO-DIMENSIONAL WAVEGUIDES 

The planar-mirror waveguide and the planar dielectric waveguide studied in the 
preceding two sections confine light in one transverse direction (the y direction) while 
guiding it along the z direction. Two-dimensional waveguides confine light in the two 
transverse directions (the x and y directions). The principle of operation and the 
underlying modal structure of two-dimensional waveguides is basically the same as 
planar waveguides; only the mathematical description is lengthier. This section is a 
brief description of the nature of modes in two-dimensional waveguides. Details can be 
found in specialized books. Chapter 8 is devoted to an important example of two- 
dimensional waveguides, the cylindrical dielectric waveguide used in optical fibers. 

Rectangular Mirror Waveguide 
The simplest generalization of the planar waveguide is the rectangular waveguide (Fig. 
7.3-1). If the walls of the guide are mirrors, then, as in the planar case, light is guided 
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Mirror 

f 
d 

1 
c-d 4 

Figure 7.3-l Modes of a rectangular mirror waveguide are characterized by a finite number of 
discrete values of k, and k, represented by dots. 

by multiple reflections at all angles. For simplicity, we assume that the cross section of 
the guide is a square of width d. If a plane wave of wavevector (k,, k,, k,) and its 
multiple reflections are to exist self-consistently inside the guide, it must satisfy the 
conditions: 

2k,d = 27rrnx, m, = 1,2,. . . 

2k,d = 2wr5, my = 1,2,. . . , 
(7.3-l) 

which are obvious generalizations of (7.1-3). 
The propagation constant p = k, can be determined from k, and k, by using the 

relation kt + ky” + p2 = n2kz. The three components of the wavevector therefore 
have discrete values, yielding a finite number of modes. Each mode is identified by two 
indices m, and my (instead of one index m). All positive integer values of m, and my 
are allowed as long as kz + k; I n2kz, as illustrated in Fig. 7.3-l. 

The number of modes M can be easily determined by counting the number of dots 
within a quarter circle of radius nk, in the k,-k, diagram (Fig. 7.3-l). If this number 
is large, it may be approximated by the ratio of the area r(nkJ2/4 to the area of a 
unit cell (rr/d)2, 

(7.3-2) 

Since there are two polarizations per mode, the total number of modes is actually 2M. 
Comparing this to the number of modes in a one-dimensional mirror waveguide, 
A4 = 2d/h, we see that increase of the dimensionality yields approximately the square 
of the number of modes. The number of modes is a measure of the degrees of freedom. 
When we add a second dimension we simply multiply the number of degrees of 
freedom. 

The field distributions associated with these modes are generalizations of those in 
the planar case. Patterns such as those in Fig. 7.1-4 are obtained in each of the x and y 
directions depending on the mode indices m, and my. 

Rectangular Dielectric Waveguide 
A dielectric cylinder of refractive index n1 with square cross section of width d is 
embedded in a medium of slightly lower refractive index n2. The waveguide modes can 
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Figure 7.3-2 Geometry of a rectangular dielectric waveguide. The values of k, and k, for the 
waveguide modes are marked by dots. 

be determined using a similar theory. Components of the wavevector (k,, k,, k,) must 
satisfy the condition kz + ky” I nfkz sin2 e,, where 8c = cos-‘(n,/n,>, so that k, and 
k, lie in the area shown in Fig. 7.3-2. The values of k, and k, for the different modes 
can be obtained from a self-consistency condition in which the phase shifts at the 
dielectric boundary are included, as was done in the planar case. 

Unlike the mirror waveguide, k, and k, of the modes are not uniformly spaced. 
However, two consecutive values of k, (or k,,) are separated by an average value of 
r/d (the same as for the mirror waveguide). The number of modes can therefore be 
approximated by counting the number of dots in the inner circle in the k,-k, diagram 
of Fig. 7.3-2, assuming an average spacing of ~/d. The result is A4 = 
(r/4)( y1 r k, sin 8,)2/(r/cI)2, from which 

with NA = (nf - n2) 2 ‘I2 being the numerical aperture. The approximation is good 
when M is large. There is also an identical number M of TM modes. Compare this 
expression with that for the planar dielectric waveguide (7.2-7). 

Geometries of Channel Waveguides 
Useful geometries for waveguides include the strip, the embedded-strip, the rib or 
ridge, and the strip-loaded waveguides illustrated in Fig. 7.3-3. The exact analysis for 
some of these geometries is not easy, and approximations are usually used. The reader 
is referred to specialized books for further readings on this topic. 

The waveguide may be fabricated in different configurations as illustrated in Fig. 
7.3-4 for the embedded-strip geometry. S bends are used to offset the propagation axis. 
The Y branch plays the role of a beamsplitter or combiner. Two Y branches may be 
used to make a Mach-Zehnder interferometer. Two waveguides in close proximity (or 
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(4 (b) (c) (4 

Figure 7.3-3 Various types of waveguide geometries: (a) strip; (b) embedded strip; (c) rib or 
ridge; (d) strip loaded. The darker the shading, the higher the refractive index. 

Figure 7.3-4 Different configurations for waveguides: (a) straight; (b) S bend; (c) Y branch; 
(d) Mach-Zeh n d er; (e) directional coupler; (f) intersection. 

intersecting) can exchange power and may be used as directional couplers, as we shall 
see in the next section. 

The most advanced technology for fabricating waveguides is Ti:LiNbO,. An embed- 
ded-strip waveguide is fabricated by diffusing titanium into a lithium niobate substrate 
to raise its refractive index in the region of the strip. GaAs strip waveguides are made 
by using layers of GaAs and AlGaAs of lower refractive index. Glass waveguides are 
made by ion exchange. As we shall see in Chaps. 18 and 21, these waveguides are used 
to make a number of optical devices, e.g., light modulators and switches. 

7.4 OPTICAL COUPLING IN WAVEGUIDES 

A. Input Couplers 

Mode Excifa tion 
As was shown in previous sections, light propagates in a waveguide in the form of 
modes. The complex amplitude of the optical field is generally a superposition of these 
modes, 

E(Y, z) = CamUrn exd-.iP,z), 
m 

(7.4-l) 

where a,,, is the amplitude, u,(y) is the transverse distribution (which is assumed to be 
real), and /3, is the propagation constant of mode m. 

The amplitudes of the different modes depend on the nature of the light source 
used to “excite” the waveguide. If the source has a distribution that matches perfectly 
that of a specific mode, only that mode is excited. A source of arbitrary distribution 
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Lens 

Figure 7.4-l Coupling an optical beam into a waveguide. 

s(y) excites different modes by different amounts. The fraction of power transferred 
from the source to mode m depends on the degree of similarity between s(y) and 
um( y). We can write s(y) as an expansion (a weighted superposition) of the orthogonal 
functions um( y), i.e., 

S(Y) = CamUrn( 
m 

where the coefficient al, the amplitude of the excited mode I, is 

al = Irn s(Y>u~(Y> dy. -m 
(7.4-3) 

This expression can be derived by multiplying both sides of (7.4-2) by u&y), integrating 
with respect to y, and using the orthogonality equation /“_,u,(y)u,(y) dy = 0 for 
1 # m along with the normalization condition. The coefficient al represents the degree 
of similarity (or correlation) between the source distribution s(y) and the mode 
distribution uI( y). 

Input Couplers 
Light may be coupled into a waveguide by directly focusing it at one end (Fig. 7.4-l). 
To excite a given mode, the transverse distribution of the incident light s(y) should 
match that of the mode. The polarization of the incident light must also match that of 
the desired mode. Because of the small dimensions of the waveguide slab, focusing and 
alignment are usually difficult and the coupling is inefficient. 

In a multimode waveguide, the amount of coupling can be assessed by using a 
ray-optics approach (Fig. 7.4-2). The guided rays within the waveguide are confined to 

Figure 7.4-2 Focusing rays into a multimode waveguide. 



OPTICAL COUPLING IN WAVEGUIDES 263 

Light-emitting 
layer 

Waveguide 
._. .,, ‘y,: .:,. .:.., 1, . . . . . . . > . . . . . . . . . . . . . . . . . . . . ..:, ‘. ..:, :: ,.,., :, ,:., .:.:::.: &::>x:; . . ._ .,., 6 ..:.. ‘: ., . . . . . . :. .‘_ :. . . :.: ,..:.,: ..::::: :‘y. - 

LED or 
laser diode 

Figure 7.4-3 End butt coupling a light-emitting diode or a laser diode to a waveguide. 

an angle e, = cos- ‘(n,/n,). Because of refraction of the incident rays, this corre- 
sponds to an external angle 8, satisfying NA = sin 8, = n, sin 8c = rt,[l - (n./n1)2]‘/2 
= (n2 - ny2 where NA is the numerical aperture of the waveguide (see Exercise 
1.2-5;. For2 maximum coupling efficiency the incident light should be focused to an 
angle not greater than 8,. 

Light may also be coupled from a semiconductor source (a light-emitting diode or a 
laser diode) into a waveguide simply by aligning the ends of the source and the 
waveguide while leaving a small space that is selected for maximum coupling (Fig. 
7.4-3). In light-emitting diodes, light originates from within a narrow semiconductor 
junction and is emitted in all directions. In a laser diode, the emitted light is itself 
confined in a waveguide of its own (light-emitting diodes and laser diodes are described 
in Chap. 16). Other methods of coupling light into a waveguide include the use of a 
prism, a diffraction grating, or another waveguide. 

The Prism Coupler 
Optical power may be coupled into or out of a slab waveguide by use of a prism. A 
prism of refractive index nP > n2 is placed at a distance dP from the slab of a 
waveguide of refractive indices n, and n2, as illustrated in Fig. 7.4-4. An optical wave 
is incident into the prism such that it undergoes total internal reflection within the 
prism at an angle OP. The incident and reflected waves form a wave traveling in the z 
direction with a propagation constant p, = npko cos 0,,. The transverse field distribu- 
tion extends outside the prism and decays exponentially in the space separating the 
prism and the slab. If the distance dP is sufficiently small, the wave is coupled to a 
mode of the slab waveguide with a matching propagation constant p, = p,. If an 
appropriate interaction distance is selected, power can be coupled into the slab 
waveguide, so that the prism acts as an input coupler. The operation may be reversed 

Guided wave 

Figure 7.4-4 The prism coupler. 
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to make an output coupler, which extracts light from the slab waveguide into free 

B. Coupling Between Waveguides 

If two waveguides are sufficiently close such that their fields overlap, light can be 
coupled from one into the other. Optical power can be transferred between the 
waveguides, an effect that can be used to make optical couplers and switches. The basic 
principle of waveguide coupling is presented here; couplers and switches are discussed 
in Chaps. 21 and 22. Consider two parallel planar waveguides made of two slabs of 
widths d, separation 2a, and refractive indices n1 and n2 embedded in a medium of 
refractive index n slightly smaller than rzi and nz, as illustrated in Fig. 7.4-5. Each of 
the waveguides is assumed to be single-mode. The separation between the waveguides 
is such that the optical field outside the slab of one waveguide (in the absence of the 
other) overlaps slightly with the slab of the other waveguide. 

The formal approach to studying the propagation of light in this structure is to write 
Maxwell’s equations in the different regions and use the boundary conditions to 
determine the modes of the overall system. These modes are different from those of 
each of the waveguides in isolation. An exact analysis is difficult and is beyond the 
scope of this book. However, for weak coupling, a simplified approximate theory, 
known as coupled-mode theory, is usually satisfactory. 

The coupled-mode theory assumes that the modes of each of the waveguides, in the 
absence of the other, remain approximately the same, say ui( y ) exp( -jp,z) and 
u,(y)exp( -jp,z), and that coupling modifies the amplitudes of these modes without 
affecting their transverse spatial distributions or their propagation constants. The 
amplitudes of the modes of waveguides 1 and 2 are therefore functions of z, G,(Z) and 
a,(z). The theory aims at determining a i( z) and a,(z) under appropriate boundary 
conditions. 

Coupling can be regarded as a scattering effect. The field of waveguide 1 is scattered 
from waveguide 2, creating a source of light that changes the amplitude of the field in 
waveguide 2. The field of waveguide 2 has a similar effect on waveguide 1. An analysis 
of this mutual interaction leads to two coupled differential equations that govern the 
variation of the amplitudes ,,(z) and a,(z). 

a 
a 

Figure 7.4-5 Coupling between two parallel planar waveguides. At z1 light is mostly 
waveguide 1, at z2 it is divided equally between the two waveguides, and at z3 it is mostly 
waveguide 2. 

in 
in 
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It can be shown (see the derivation at the end of this section) that the amplitudes 
al(z) and CZ~(Z) are governed by two coupled first-order differential equations 

where 

Ap = PI - P2 (7.4-5) 

(7.4-4a) 

(7.4-4b) 

Coupled-Mode 
Equations 

is the phase mismatch per unit length and 

(7.4-6) 

are coupling coefficients. 
We see from (7.4-4) that the rate of variation of aI is proportional to a2, and vice 

versa. The coefficient of proportionality is the product of the coupling coefficient and 
the phase mismatch factor exp(j Ap z). 

Assuming that the amplitude of light entering waveguide 1 is aI(O) and that no light 
enters waveguide 2, a2(0) = 0, then (7.4-4) can be solved under these boundary 
conditions, yielding the harmonic solution 

where 

al(z) =a,(O) exp + ( F)(cos yz - j$ sin yz) 

&2(Z) =al(O> 2 expi -jF) sin yz, 

(7.4-7a) 

(7.4-7b) 

(7.4-8) 

and 

e = ( e12e21)1’2. (7.4-9) 
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Waveguide 1 

h(O)*C. 

Waveguide 2 

Figure 7.4-6 Periodic exchange of power between guides 1 and 2. 

The optical powers PI(z) a Icz~(z)/~ and P,(z) a [cz~(z)[~ are therefore 

h(z) = fw) [cos2yz + [grsin2yz] 

E1212 
P2( z) = P,(O) y2 sin2 yz . 

(7.4-l Oa) 

(7.4-i Ob) 

Thus power is exchanged periodically between the two guides as illustrated in Fig. 
7.4-6. The period is 27r/y. Power conservation requires that Cl2 = e2r = C?. 

When the guides are identical, i.e., ItI = n,, /3r = p2, and Ap = 0, the two guided 
waves are said to be phase matched. Equations (7.4-lOa, b) then simplify to 

(7.4-11 a) 

(7.4-l 1 b) 

The exchange of power between the waveguides can then be complete, as illustrated in 
Fig. 7.4-7. 

-0 Lo z 

Figure 7.4-7 Exchange of power between guides 1 and 2 in the phase-matched case. 
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la) (6) 

Figure 7.4-8 Optical couplers: (a) switching of power from one waveguide to another; (b) a 
3-dB coupler. 

We thus have a device for coupling desired fractions of optical power from one 
waveguide to another. At a distance z = L, = r/2(!?, called the transfer distance, the 
power is transferred completely from waveguide 1 to waveguide 2 [Fig. 7.4-8(a)]. At a 
distance L,/2, half the power is transferred, so that the device acts as a 3-dB coupler, 
i.e., a 50/50 beamsplitter [Fig. 7.4-8(b)]. 

Switching by Control of Phase Mismatch 
A waveguide coupler of fixed length, 15, = rr/2~?, for example, changes its power-trans- 
fer ratio if a small phase mismatch A/? is introduced. Using (7.4-lob) and (7.4-g), the 
power-transfer ratio Y = P2(L0)/PI(0) may be written as a function of A/3, 

F= (si2sinc2( ;[I + ( +,‘]“2), (7.4-12) 
Power-Transfer 

Ratio 

where sine(x) = sin(rx)/(rrx). Figure 7.4-9 illustrates the dependence of the power- 
transfer ratio Y on the mismatch parameter A/? L,. The ratio has a maximum value 
of unity at Ap L, = 0, decreases with increasing Ap L,, and then vanishes when 
A@ L, = &. 

Phase mismatch ABLo 

Figure 7.4-9 Dependence of the power transfer ratio F = P,(L,)/P,(O) on the phase mis- 
match parameter APL,. The waveguide length is chosen such that for A/3 = 0 (the phase-matched 
case), maximum power is transferred to waveguide 2, i.e., 7 = 1. 
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The dependence of the transferred power on the phase mismatch can be utilized in 
making electrically activated directional couplers. If the mismatch Ap L, is switched 
between 0 and ~67, the light is switched from waveguide 2 to waveguide 1. Electrical 
control of Ap can be achieved if the material of the waveguides is electro-optic (i.e., if 
its refractive index can be altered by applying an electric field). Such a device will be 
studied in Chaps. 18 and 21 in connection with electro-optic switches. 

*Derivation of the Coupled Wave Equations 
We now derive the differential equations (7.4-4) that govern the amplitudes @i(z) 
and a&z) of the coupled modes. When the two waveguides are not interacting they 
carry optical fields whose complex amplitudes are of the form 

Ed Y, 4 =vl( Y) exp( -.&z> (7.4-l 3a) 

(7.4-13b) 

The amplitudes ai and a2 are then constant. In the presence of coupling, we assume 
that the amplitudes ai and a2 become functions of z but the transverse functions 
u,(y) and u2(y), and the propagation constants pi and &, are not altered. The 
amplitudes ai and a2 are assumed to be slowly varying functions of z in comparison 
with the distance p -’ (the inverse of the propagation constant, /3i or p2, which is of 
the order of magnitude of the wavelength of light). 

The presence of waveguide 2 is regarded as a perturbation of the medium outside 
waveguide 1 in the form of a slab of refractive index n2 - n and width d at a distance 
2a. The excess refractive index (n, - n) and the field E, correspond to an excess 
polarization density P = (Ed - l )E2 = l ,(ns - n2)E2, which creates a source of opti- 
cal radiation into waveguide 1 [see (5.2-19)] Y’, = -pO d29/dt2 with complex ampli- 
tude 

S, = pp2P = p,u2E,(ni - n2)E2 = (nz - n2)kzE2 

= (k; - k2)E2. (7.4-14) 

Here g2 and E are the permittivities associated with the refractive indices n2 and n, 
and k, = n2ko. This source is present only in the slab of waveguide 2. 

To determine the effect of such a source on the field in waveguide 1, we write the 
Helmholtz equation in the presence of a source as 

V2E, + k;E, = -S, = -(k; - k2)E2. (7.4-15a) 

We similarly write the Helmholtz equation for the 
generated as a result of the field in wavegu ide 1, 

wave in waveguide 2 with a source 

V2E2 + k;E, = -S, = -(kf - k2)E,, (7.4-15b) 

where k, = nlko. Equations (7.4-15a, b) are two coupled partial differential equations 
which we solve to determine E, and E,. This type of perturbation analysis is valid only 
for weakly coupled waveguides. 

We now write E,(y, z) =a,(z)e,(y, z) and E2(y, z) =a2(z)e2(y, z), where e,(y, z) 
= ui(y)exp(--jpiz) and e,(y, z) = U2(y)exp(-j&z) and note that e, and e2 must 
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satisfy the Helmholtz equations, 

V2e, + ktel = 0 

V2e2 + kze2 = 0, 

(7.4-l 6a) 

(7.4-16b) 

where k, = n,ko and k, = n2ko for points inside the slabs of waveguides 1 and 2, 
respectively, and k, = k, = nk, elsewhere. Substituting E, =arer into (7.4-15a), we 
obtain 

d2al 
-el + 222 = -(kg - k2)a2e2. 
dz2 

(7.4-17) 

Noting that al varies slowly, whereas e, varies rapidly with z, we neglect the first term 
of (7.4-17) compared to the second. The ratio between these terms is 
[(d!P/dz)e,]/[2*de,/dz] = [(d?/dz)e,]/[2W -j/?,el>] = j(d*/lSr)/2/3, dz where 
1I’ = da,/dz. The approximation is valid if dU/q -=+z p1 dz, i.e., if the variation in 
a,(z) is slow in comparison with the length /3r- ‘. 

We now substitute for e, = u1 exp(-jP,z) and e2 = u2 exp(-jP,z) into (7.4-17), 
after neglecting its first term, to obtain 

22( -j/31)ul(y)e-jflIz = -(kz - k2)G2u2( y)e-jfil’. (7.4-18) 

Multiplying both sides of (7.4-18) by ul(y), integrating with respect to y, and using the 
fact that u:(y) is normalized so that its integral is unity, we obtain 

da 
Le-iplz = -jC21a2( z)e+~zz 

dz 
, (7.4-19) 

where e21 is given by (7.4-6). A similar equation is obtained by repeating the procedure 
for waveguide 2. These equations yield the coupled differential equations (7.4-4). 
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7.1-1 

7.1-2 

PROBLEMS 

Field Distribution. (a) Show that a single TEM plane wave E,(y, z) = 
A exp(-jk,y)exp(-jpz) cannot satisfy the boundary conditions, E,(+d/2, z) = 0 
at all z, in the mirror waveguide illustrated in Fig. 7.1-1. 
(b) Show that the sum of two TEM plane waves written as E,(y, z) = 
A, exp(-jk,,y)exp(-jfiiz) + A, exp( -jk,,y)exp(-j&z) does satisfy the bound- 
ary conditions if A, = +A,, /3i = &, and k,i = -k,, = mT/d, m = 1,2,. . . . 

Modal Dispersion. Light of wavelength A, = 0.633 km is transmitted through a 
mirror waveguide of mirror separation d = 10 pm and n = 1. Determine the 
number of TE and TM modes. Determine the group velocities of the fastest and the 
slowest mode. If  a narrow pulse of light is carried by all modes for a distance of 1 m 
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in the waveguide, how 
the group velocities? 

much does the pulse spread as a result of the differences of 

7.2-l Parameters of a Dielectric Waveguide. Light of free-space wavelength A, = 0.87 pm 
is guided by a thin planar film of width d = 2 pm and refractive index n, = 1.6 
surrounded by a medium of refractive index n2 = 1.4. 
(a) Determine the critical angle 8, and its complement tic, the numerical aperture 
NA, and the maximum acceptance angle for light originating in air (n = 1). 
(b) Determine the number of TE modes. 
(c) Determine the bounce angle 8 and the group velocity v of the m = 0 TE mode. 

7.2-2 Effect of Cladding. Repeat Problem 7.2-l if the thin film is suspended in air 
(n, = 1). Compare the results. 

7.2-3 Field Distribution. The transverse distribution u,(y) of the electric-field complex 
amplitude of a TE mode in a slab waveguide is given by (7.2-9) and (7.2-12). Derive 
an expression for the ratio of the proportionality constants. Plot the distribution of 
the m = 0 TE mode for a slab waveguide with parameters n1 = 1.48, n2 = 1.46, 
d = 0.5 pm, and A, = 0.85 km, and determine its confinement factor (percentage of 
power in the slab). 

7.2-4 Derivation of the Field Distributions Using Maxwell’s Equations. Assuming that the 
electric field in a symmetric dielectric waveguide is harmonic within the slab and 
exponential outside the slab and has a propagation constant p in both media, we 
may write E,( y, z) = u( y)e-jpz, where 

-d/2 2 y I d/2, 

Y > d/2, 
y < -d/2. 

For the Helmholtz equation to be satisfied, k; + /X2 = nfkz and -y2 + p2 = nikz. 
Use Maxwell’s equations to derive expressions for H,(y, z) and H,(y, z). Show that 
the boundary conditions are satisfied if p, y, and k, take the values p,, y,, and 
k,, derived in the text and verify the self-consistency condition (7.2-4). 

7.2-5 Single-Mode Waveguide. What is the largest thickness d of a planar symmetric 
dielectric waveguide with refractive indices nl = 1.50 and n2 = 1.46 for which there 
is only one TE mode at A, = 1.3 pm? What is the number of modes if a waveguide 
with this thickness is used at A, = 0.85 pm instead? 

7.2-6 Mode Cutoff. Show that the cutoff condition for TE mode m > 0 in a symmetric slab 
waveguide with n, = n2 is approximately A$ = 8nlAnd2/m2, where An = n1 - n2. 

7.2-7 TM Modes. Derive an expression for the bounce angles of the TM modes similar to 
(7.2-4). Use a computer to generate a plot similar to Fig. 7.2-2 for TM modes in a 
waveguide with sin g= = 0.3 and A/2d = 0.1. What is the number of TM modes? 

7.3-l Modes of a Rectangular Dielectric Waveguide. A rectangular dielectric waveguide 
has a square cross section of area lo-* mm* and numerical aperture NA = 0.1. Use 
(7.3-3) to plot the number of TE modes as a function of frequency v. Compare your 
results with Fig. 7.2-4. 

7.4-l Coupling Coefficient Between Two Slabs. (a) Use (7.4-6) to determine the coupling 
coefficient between two identical slab waveguides of width d = 0.5 pm, spacing 
2a = 1.0 pm, refractive indices n1 = n2 = 1.48, in a medium of refractive index 
n = 1.46, at A, = 0.85 pm. Assume that both guides are operating in the m = 0 TE 
mode and use the results of Problem 7.2-3 to determine the transverse distributions. 
(b) Determine the length of the guides so that the device acts as a 3-dB coupler. 


