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ABSTRACT
We investigate the kinematic parameters of the Milky Way disc using the Radial Velocity (RAVE) and

Geneva-Copenhagen (GCS) stellar surveys. We do this by fitting a kinematic model to the data taking the
selection function of the data into account. Using Markov Chain Monte Carlo (MCMC) technique, we in-
vestigate the full posterior distributions of the parameters given the data. We investigate the ‘age-velocity
dispersion’ relation (AVR) for the three kinematic components (σR, σφ, σz), the radial dependence of the ve-
locity dispersions, the Solar peculiar motion (U�, V�,W�), the circular velocity (v0) at the Sun and its fall
with height above the mid-plane. For RAVE, our analysis uses only the angular position and radial velocity
of stars since these quantities are determined to high accuracy. We confirm that the Besançon-style Gaussian
model accurately fits the GCS data, but fails to match the details of the more spatially extended RAVE sur-
vey. In particular, our use of the Shu distribution function handles non-circular orbits more accurately and
provides a better fit to the kinematic data. The Gaussian distribution function not only fits the data poorly but
systematically underestimates the fall of velocity dispersion with radius. The measured Solar peculiar motion,
U� = 11.0 ± 0.2, V� = 7.5 ± 0.2, and W� = 7.5 ± 0.1, is in good agreement with recent estimates ex-
cept for value of V� which we find to be lower. We find the circular velocity to be v0 = 232 ± 2 km s−1

(with R� = 8 kpc) or Ω� = 29.9 ± 0.3 km s−1 kpc−1 which is in good agreement with the Sgr A* proper
motion. If we explicitly adopt the Sgr A* proper motion as a prior, we find the gradient of circular velocity
to be 0.65 ± 0.2 km s−1 kpc−1. Additional systematic uncertainties in V� and v0 of the order of those in the
adopted priors on spatial distribution of stars are expected. We find that, for an extended sample of stars, v0 is
underestimated if the vertical dependence of the effective circular velocity is neglected. Proper treatment of
the third integral of motion still remains an issue. We also find that the radial scale length of the velocity
dispersion profile of the thick disc is smaller than that of the thin disc.
Subject headings: galaxies:kinematics and dynamics – fundamental parameters – formation – methods: data

analysis – numerical – statistical
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1. INTRODUCTION

Understanding the origin and evolution of disc galaxies is
one of the major goals of modern astronomy. The disc is a
prominent feature of late type galaxies like the Milky Way. As
compared to distant galaxies, for which one can only measure
the gross properties, the Milky Way offers the opportunity to
study the disc in great detail. For the Milky Way, we can
determine 6-dimensional phase space information, combined
with photometric and stellar parameters, for a huge sample of
stars. This has led to large observational programs to catalog
the stars in the Milky Way in order to compare them with
theoretical models.

The Milky Way stellar system is broadly composed of four
distinct parts although in reality there is likely to be consid-
erable overlap between them: the thin disc, the thick disc,
the stellar halo and the bulge. In this paper, we mainly con-
centrate on understanding the disc components which are the
dominant stellar populations. In the Milky Way, the thick disc
was originally identified as the second exponential required to
fit vertical star counts (Gilmore & Reid 1983; Reid & Majew-
ski 1993; Jurić et al. 2008). Thick discs are also ubiquitous
features of late type galaxies (Yoachim & Dalcanton 2006).
But whether the thick disc is a separate component with a dis-
tinct formation mechanism is highly debatable and a difficult
question to answer.

Since the Gilmore & Reid (1983) result, various attempts
have been made to characterize the thick disc. Some studies
suggest that thick disc stars have distinct properties: they are
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old and metal poor (Chiba & Beers 2000) and α enhanced
(Fuhrmann 1998; Bensby et al. 2005, 2003). Chemical evo-
lution models by Chiappini et al. (1997) advocate a hiatus in
star formation to explain this. Jurić et al. (2008) fit the SDSS
star counts using a two component model and find that the
thick disc has a larger scale-length than the thin disc. In con-
trast, Bovy et al. (2012d) using SDSS and SEGUE data find
the opposite when they associate the thick disc with the α-
enhanced component. Finally, the idea of a separate thick disc
has recently been challenged. Schönrich & Binney (2009b,a)
showed that chemical evolutionary models with radial migra-
tion and mixing can replicate the properties of the thick disc
(see also Loebman et al. 2011, that explore radial mixing us-
ing N-body simulations). Ivezić et al. (2008) do not find the
expected separation between metallicity and kinematics for F,
G stars in the SDSS survey, and Bovy et al. (2012b,c) argue
that the thick disc is a smooth continuation of the thin disc.

Opinions regarding the formation of a thick disc are equally
divided. Various mechanisms have been proposed: accretion
of stars from disrupted galaxies (Abadi et al. 2003), heating
of discs by minor mergers (Quinn et al. 1993; Kazantzidis
et al. 2008, 2009; Villalobos & Helmi 2008; Di Matteo et al.
2011), radial migration of stars by spiral arms (Schönrich &
Binney 2009b,a; Loebman et al. 2011), a gas-rich merger at
high redshift (Brook et al. 2004), and gravitationally unsta-
ble disc evolution (Bournaud et al. 2009), inter alia. Recently,
Forbes et al. (2012) have suggested that the thick disc can
form without secular heating, mainly because stars forming at
higher redshift had a higher velocity dispersion to begin with.
Another possibility as proposed by Roškar et al. (2010) is mis-
aligned angular momentum of in-falling gas. How the angular
momentum of halo gas becomes misaligned is described in
Sharma et al. (2012). However, Aumer & White (2013) and
Sales et al. (2012) suggest that misaligned gas can destroy the
discs.

The only way to test the different thick disc theories is to
compare the kinematic and chemical abundance distributions
of the thick disc stars with those of different models. Since,
the thin and thick disc stars strongly overlap both in space and
kinematics, it is difficult to separate them using just position
and velocity. To really isolate and study the thick disc, one
needs a tag that is unique to its formation mechanism. Age
is a possible tag but it is difficult to get reliable age estimates
of stars. Chemical composition is another promising tag that
can be used, but this requires high resolution spectroscopy of
a large number of stars. In near future, surveys like GALAH
using the HERMES spectrograph should be able to fill this
void (Freeman & Bland-Hawthorn 2008). In our first analysis,
we restrict ourselves to a differential kinematic study of the
disc components. We plan to treat the more difficult problem
of chemo-dynamics in future.

The simplest way to describe the kinematics of the Milky
Way stars in the Solar neighborhood is by using Gaussian dis-
tribution functions. If a single component disc is used, then
in cylindrical co-ordinates only three components of velocity
dispersion σR, σφ and σz and the mean azimuthal velocity vφ
need to be known 17. If a thick disc is included, one requires 5
additional parameters, one of them being the fraction of stars
in thick disc. If stars are sampled from an extended volume
and not just the Solar neighborhood, then one needs to spec-
ify the radial dependence of the dispersions. The velocity dis-

17 In reality a knowledge of the full velocity dispersion tensor is required.
The cross terms can be ignored only for stars close to mid plane

persion of a disc stellar population is known to increase with
age. Spitzer & Schwarzschild (1953) showed that scattering
of stars by gas clouds can cause an increase in velocity dis-
persion with age.18 To account for this, one has to model the
thin disc with an age velocity dispersion relation, traditionally
assumed to be a power law (although see Edvardsson et al.
1993; Quillen & Garnett 2001; Seabroke & Gilmore 2007).
The exponents βR, βφ and βz of these power laws may not be
the same for all three components.

The ratio of σz/σR and σφ/σR and the values of βR, βφ and
βz are useful for understanding the physical processes respon-
sible for heating the disc. Hänninen & Flynn (2002) showed
that one gets different predictions depending upon how the
perturbers are distributed in space, e.g., in plane or in a sphere.
Another way to heat up the disc is by Lindblad resonances
of transient spiral arms that can scatter the stars. This pro-
cess specifically increases the in-plane dispersions (Carlberg
& Sellwood 1985; Sellwood 2013). Multiple spiral density
waves Minchev & Quillen (2006) or a combination of bar and
spirals can also heat up the disc (Minchev & Famaey 2010).

In reality, multiple processes work together to heat up the
disc. Ideally, one would like to study the disc evolution using
fully self-consistent cosmological simulations, where the rel-
ative importance of different processes can be studied. Cur-
rent cosmological simulations of Milky Way-sized galaxies
predict velocity dispersions that are too high as compared to
observations (House et al. 2011). Also, a floor in dispersion
profiles is observed which is related to the density threshold
used for star formation in the simulations. Recently, Minchev
et al. (2013) investigate the age-velocity dispersion relation
(AVR) for stars in simulations of disc galaxies and find it to
be in rough agreement with observations. Disconcertingly,
Sellwood (2013) has shown that 2-body relaxation can artifi-
cially increase the vertical dispersion and this may have af-
fected many published simulations.

While simulations are the most accurate way to understand
disc galaxies, it is not feasible to run multiple simulations to
fit the observational data. Hence, fitting analytical models to
data is important. Characterizing the properties of the Milky
Way disc by fitting a suitable analytical model helps to sum-
marize large amounts of data but its usefulness extends be-
yond this. The more elaborate the model, and the more phys-
ical processes it captures, the better it can help us to under-
stand the formation of the disc galaxies. McMillan & Binney
(2012) discuss in detail the virtues of fitting equilibrium ana-
lytical models to data.

The first generation of stellar population models character-
ized the density distribution of stars using photometric sur-
veys. The earliest such attempt was by Bahcall & Soneira
(1980a,b, 1984) where they assumed an exponential disc
with magnitude-dependent scale heights. An evolutionary
model using population synthesis techniques was presented
by Robin & Creze (1986). Given a star formation rate (SFR)
and an initial mass function (IMF), one calculates the result-
ing stellar populations using theoretical evolutionary tracks.
The important step forward was that the properties of the
disc, like scale height, density laws and velocity dispersions,
were assumed to be a function of age rather than being color-
magnitude dependent terms. Bienayme et al. (1987) later in-
troduced dynamical self-consistency to link disc scale and

18 Strictly speaking, the increased dispersion comes from in-plane scatter-
ing processes; the clouds serve to provide the vertical dispersion by redirect-
ing the stars (Sellwood 2013).
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vertical velocity dispersions via the gravitational potential.
Haywood et al. (1997a,b) further improved the constraints on
SFR and IMF of the disc. The present state of the art is de-
scribed in Robin et al. (2003) and is known as the Besançon
model. Here, the disc is constructed from a set of isothermal
populations that are assumed to be in equilibrium. Analytic
functions for density distributions, the age/metallicity rela-
tion and the IMF are provided for each population. A similar
scheme is also used by the codes TRILEGAL Girardi et al.
(2005) and Galaxia (Sharma et al. 2011).

There is a crucial distinction between kinematic and dy-
namical models. In a kinematic model, one specifies the stel-
lar motions according to a simple analytic formula based on
local position; in a dynamical model, the spatial density dis-
tribution of stars and their kinematics are self-consistently
linked by the potential in which the stars move, with the as-
sumption that the system is in steady state. The action and
angle formalism is especially well suited for constructing dy-
namical models. Here, the problem reduces from six dimen-
sions of phase space to three dimensions of action space. This
has led to torus modelling (McMillan & Binney 2008; Bin-
ney & McMillan 2011) where the distribution functions that
are simple analytical functions of actions provide a powerful
and simple way to construct dynamical models (Binney 2010,
2012b,a).

Today we have data from large photometric surveys like
DENIS (Epchtein et al. 1999), 2MASS (Skrutskie et al. 2006)
and SDSS (Abazajian et al. 2009). The SDSS survey in partic-
ular has been used to provide an empirical model of the Milky
Way stars (Jurić et al. 2008; Ivezić et al. 2008; Bond et al.
2010). Since kinematic data for a large number of stars was
not available at the time the Besançon model was constructed,
the kinematic parameters of the model have not been tested as
extensively as the star counts. The Hipparcos satellite (Per-
ryman et al. 1997) and the UCAC2 catalog (Zacharias et al.
2004) provided proper motions and parallaxes for∼ 105 stars
in the Solar neighborhood. Dehnen & Binney (1998b) used
the Hipparcos data to study stellar kinematics as a function of
color. They also determined the Solar motion with respect to
the LSR and the axial ratios of the velocity ellipsoid. Binney
et al. (2000) also using Hipparcos stars found the velocity dis-
persion to vary with function of age as τ0.33. More recently,
Aumer & Binney (2009) using data from a new reduction
of the Hipparcos mission estimated the Solar motion and the
AVR for all three velocity components. The AVR is assumed
to be a power law with exponents βR, βφ and βz for the three
velocity components in the galactocentric cylindrical coordi-
nate system. They found (βR, βφ, βz) = (0.30, 0.43, 0.44).
They also investigated the star formation rate (SFR) and found
it to be declining from past to present. However, it should be
noted that a degeneracy exists between the SFR and the slope
of the IMF (Haywood et al. 1997b), and constraining both of
them together is challenging.

The GCS survey (Nordström et al. 2004) combined the Hip-
parcos and Tycho-2 (Høg et al. 2000) proper motions with ra-
dial velocity measurements to create a kinematically unbiased
sample of 16682 F and G stars in the Solar neighborhood. The
data contains full 6D phase space information along with es-
timates of ages. The temperature, metallicity and ages were
further improved by Holmberg et al. (2007) and distances and
kinematics were improved by Holmberg et al. (2009) using
revised Hipparcos parallaxes. They investigated the AVR and
found (βR, βφ, βz) = (0.39, 0.40, 0.53) which are at odds
with Aumer & Binney (2009). Casagrande et al. (2011) used

the infrared flux method to improve the temperature, metallic-
ity and age estimates for the GCS survey. The uncertainty in
estimated ages is an ongoing concern for studies that attempt
to derive the AVR directly from the GCS data.

With the advent of large spectroscopic surveys like RAVE
(Steinmetz et al. 2006) and SDSS/SEGUE (Yanny et al.
2009), we can now get the radial velocity and stellar pa-
rameters for a large number of stars and even for stars be-
yond the Solar neighborhood. Bovy et al. (2012c,b,d) used
SDSS/SEGUE to find that mono-abundance populations can
be fit by simple double exponentials, and the vertical veloc-
ity dispersion follows an exponential decline with radius with
no other z dependence. Finally, they also find that the thick
disc seems to be a continuation of the thin disc rather than a
separate entity.

The RAVE survey has also been used to study the stellar
kinematics of the Milky Way disc. Pasetto et al. (2012a,b)
study the velocity dispersion and mean motion of the thin and
thick disc stars in the (R, z) plane. They use the technique of
singular value decomposition to compute the moments of the
velocity distribution. Their analysis clearly shows that veloc-
ity dispersions fall as a function of distance from the Galactic
Center. Williams et al. (2013) explored the kinematics us-
ing red clump stars from RAVE and found complex structures
in velocity space. A detailed comparison with the prediction
from the code Galaxia was done, taking the selection function
of RAVE into account. The trend of dispersions in the (R, z)
plane showed a good match with the model. However, the
mean velocities showed significant differences. Boeche et al.
(2013) studied the relation between kinematics and the chem-
ical abundances of stars. By computing stellar orbits they de-
duced the maximum vertical distance zmax and eccentricity
e of stars. Next they studied the chemical properties of stars
by binning them up in (zmax, e) plane. They found that stars
with zmax < 1 and 0.4 < e < 0.6 have two populations with
distinct chemical properties, which hints at radial migration.

Stellar kinematics allow us to measure the peculiar motion
(U�, V�,W�) of the Sun with respect to the local standard of
rest (LSR), and also the LSR value itself (in other words, the
circular velocity at the location of Sun, vc(R0)). There have
been as many determinations of these as there have been new
data, one of the earliest being (U�, V�,W�) = (9, 12, 7) km
s−1 by Delhaye (1965). The most accurate measurement of
these till now are from the Hipparcos proper motions and the
Geneva Copenhagen survey. Dehnen & Binney (1998b) and
Aumer & Binney (2009) using Hipparcos proper motions got
(U�, V�,W�) = (9.96± 0.33, 5.25± 0.54, 7.07± 0.37) km
s−1. A revision of V� was suggested by (Binney 2010) and
(McMillan & Binney 2010). Later Schönrich et al. (2010)
explained why the previous estimates that were using col-
ors as a proxy for age gave wrong results. Using a chemo-
dynamical model on GCS data they found (U�, V�,W�) =
(11.1 ± 0.72, 12.24 ± 0.47, 7.07 ± 0.36) km s−1. Schönrich
(2012) described a model-independent method and suggests
that U� could be as high as 14 km s−1. As further evidence of
an unsettled situation, Bovy et al. (2012a) find vc = 218± 6,
V� = 26 ± 3 and U� = 10.5 km s−1 and also suggest a
revision of the LSR reference frame.

In this paper, we refine the kinematic parameters of the
Milky Way, using first a simple model based on Gaussian
functions, and then a model based on the Shu distribution
function (DF). We explore the age-velocity dispersion rela-
tion, the radial gradient in dispersions, the Solar motion and
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the circular velocity. A full exploration of the parameter space
using Markov chain Monte Carlo (MCMC) techniques has not
been done before, even for a sample as small as the GCS.
If the full 6D phase space information is not available, one
has to marginalize over unknown variables, a process that
is computationally expensive. For Gaussian models, an an-
alytic form exists for the marginal distribution of line-of-sight
(LOS) velocities when integrated over tangential velocities,
but not for Shu DF models. Bovy et al. (2012a) recently car-
ried out a detailed investigation using 3500 APOGEE stars,
but the AVR was not investigated and only Gaussian mod-
els were considered. In this paper, we fit a kinematic model
to the 280,000 RAVE stars, where we marginalize over age,
metallicity, mass, distance and proper motions. The marginal-
ization is done taking into account the photometric selection
function of RAVE. To handle the large data size, we discuss
two new MCMC model-fitting techniques. Our aim is to en-
capsulate the main kinematic properties of the Milky Way disc
by means of simple analytical models, which in future would
be also useful for making detailed comparison with simula-
tions.

The paper is organized as follows. In §2, we introduce the
analytic framework employed for modelling. In §3, we de-
scribe the data that we use and its selection functions. In §4,
we describe MCMC model fitting technique employed here.
In §5, we present our results and discuss their implications in
§6. Finally, in §7 we summarize our findings and look forward
to the next stages of the project.

2. ANALYTIC FRAMEWORK FOR MODELLING THE GALAXY

We first describe the analytic framework used to model the
Galaxy (Sharma et al. 2011). The stellar content of the Galaxy
is modeled as a set of distinct components: the thin disc, the
thick disc, the stellar halo and the bulge. The distribution
function, i.e., the number density of stars as a function of po-
sition (r), velocity (v), age (τ ), metallicity (Z), and mass (m)
of stars for each component is assumed to be specified a pri-
ori. This can be expressed in general as

fj = fj(r,v, τ, Z,m) (1)

where j (= 1, 2, 3, 4) runs over components. The correct form
of Equation (1) that describes all the properties of the Galaxy
and is self-consistent is still an open question. However, over
the past few decades considerable progress has been made in
identifying a working model dependent on a few simple as-
sumptions (Robin & Creze 1986; Bienayme et al. 1987; Hay-
wood et al. 1997a,b; Girardi et al. 2005; Robin et al. 2003).
Our analytical framework brings together these models as we
describe this below.

For a given Galactic component, let the stars form at a rate
Ψ(τ) and the mass distribution of stars ξ(m|τ) (IMF) be a
parameterized function of age τ only. Let the present day
spatial distribution of stars p(r|τ) be conditional on age only.
Finally, assuming that the velocity distribution to be p(v|r, τ)
and the metallicity distribution to be p(Z|τ)

f(r,v, τ,m,Z) =
Ψ(τ)

〈m〉
ξ(m|τ)p(r|τ)p(v|r, τ)p(Z|τ).(2)

The functions conditional on age can take different forms
for different Galactic components. The IMF here is nor-
malized such that

∫mmax

mmin
ξ(m|τ)dm = 1 and 〈m〉 =∫mmax

mmin
mξ(m|τ)dm is the mean stellar mass.

The metallicity distribution is modeled as a log-normal dis-
tribution,

p(Z, |τ) =
1

σlogZ(τ)
√

2π
exp

[
− (logZ − log Z̄(τ))

(2σ2
logZ(τ))

]
,

(3)
the mean and dispersion of which are given by age-dependent
functions Z̄(τ) and σlogZ(τ). The Z̄(τ) is widely referred to
as the age-metallicity relation (AMR). Functional forms for
each of the expressions in Equation (2) are given in Sharma
et al. (2011) (see also Robin et al. 2003).

We now discuss the functional forms of the velocity distri-
bution p(v|r, τ) which we aim to derive in this paper.

2.1. Gaussian velocity ellipsoid model
In this model, the velocity distribution is assumed to be a

triaxial Gaussian,

p(v|r, τ) =
1

σRσφσz(2π)3/2
exp

[
− v2

R

2σ2
R

]
exp

[
− v2

z

2σ2
z

]
×

exp

[
− (vφ − vφ)2

2σ2
φ

]
, (4)

where R,φ, z are the cylindrical coordinates. vc(R) the cir-
cular velocity as a function of cylindrical radius R. The vφ is
the asymmetric drift and is given by

vφ
2(τ,R) = v2

c (R) + σ2
R ×(

d ln ρ

d lnR
+
d lnσ2

R

d lnR
+ 1−

σ2
φ

σ2
R

+ 1− σ2
z

σ2
R

)
(5)

This follows from Equation 4.227 in Binney & Tremaine
(2008) assuming vR vz = (v2

R − v2
z)(z/R). This is valid

for the case where the principal axes of velocity ellipsoid are
aligned with the (r, θ, φ) spherical coordinate system. If the
velocity ellipsoid is aligned with the cylindrical (R, z, φ) co-
ordinate system then vR vz = 0. Recent results using the
RAVE data suggest that the velocity ellipsoid is aligned with
the spherical coordinates (Siebert et al. 2008). One can pa-
rameterize our ignorance by writing the asymmetric drift as
follows:

vφ
2(τ,R) = v2

c (R) + σ2
R

(
d ln ρ

d lnR
+
d lnσ2

R

d lnR
+ 1− k2

ad

)
(6)

This is the form that is also used by Bovy et al. (2012a).
The dispersions of the R, z and φ components of velocity

increase as a function age due to secular heating in the disc,
and there is a radial dependence such that the dispersion in-
creases towards the Galactic Center. We model these effects
after Aumer & Binney (2009) and Binney (2010) using the
functional form

σthin
R,φ,z(R, τ) =σthin

R,φ,z,�exp

[
−qthin(R−R0)

Rd

]
×(

τ + τmin

τmax + τmin

)βR,φ,z
(7)

σthick
R,φ,z(R) =σthick

R,φ,z,�exp

[
−qthick(R−R0)

Rd

]
(8)

where Σ is the surface density of the disc. The choice of the
radial dependence is motivated by the desire to produce discs
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in which the scale height is independent of radius. For exam-
ple, under the epicyclic approximation, if σz/σR is assumed
to be constant, then the scale height is independent of radius
for q = 0.5 (van der Kruit & Searle 1982; van der Kruit 1988;
van der Kruit & Freeman 2011). In reality there is also a z
dependence of velocity dispersions which we have chosen to
ignore in our present analysis. This means that for a given
mono age population the asymmetric drift is independent of
z. However, the velocity dispersion and asymmetric drift of
the combined population of stars are a function of z. This is
because the scale height of stars for a given isothermal pop-
ulation is a monotonically increasing function of its vertical
velocity dispersion.

2.2. Shu distribution function model
The Gaussian velocity ellipsoid model has its limitations.

In reality, the distribution of angular momentum L is not
Gaussian but is skewed. A better approximation to the ve-
locity spread is the Shu (1969) distribution function. Another
advantage of the Shu DF is that given a potential, density dis-
tribution and velocity dispersion profile it gives a self con-
sistent distribution of velocities. In contrast, in the Gaussian
model the potential density and velocities are independent of
each other.

Strictly speaking, the validity of the Shu model is restricted
to motion in a plane. However, assuming vertical motions are
independent of planar motion, one can write the full distribu-
tion function as follows:

f(ER, L, vz) =
F (L)

σ2(L)
exp

[
− ER
σ2(L)

]
exp

[
−v2

z/(2σ
2
z)
]

σz
√

2π
(9)

where

ER =
1

2
v2
R + Φeff(R,L)− Φeff(RL, L)

=
1

2
v2
R + ∆Φeff(R,L) (10)

with

Φeff(R,L) =
L2

2R2
+ Φ(R) =

L2

2R2
+ v2

c lnR (11)

being the effective potential. Let Rg(L) = L/vc be the ra-
dius of a circular orbit with specific angular momentum L.
In Schönrich & Binney (2012) (see also Sharma & Bland-
Hawthorn 2013) it was shown that joint distribution of R and
Rg can be written as

P (R,Rg) =
(2π)2Σ(Rg)

g( 1
2a2

)
exp

[
2 ln(Rg/R) + 1 −R2

g/R
2

2a2

]
(12)

where

a=σ(Rg)/vc (13)

g(c) =
ecΓ(c− 1/2)

2cc−1/2
(14)

We assume a to be specified as

a=a0(τ)exp

[
−qRg
Rd

]
=
σR,�
vc

(
τ + τmin

τmax + τmin

)βR
exp

[
−q(Rg −R0)

Rd

]
(15)

TABLE 1
DESCRIPTION OF MODEL PARAMETERS

Model Parameter Description
U� Solar motion with respect to LSR
V� Solar motion with respect to LSR
W� Solar motion with respect to LSR
σthin
φ The velocity dispersion at 10 Gyr

Normalization of thin disc AVR (Eq 8)
σthin
z The velocity dispersion at 10 Gyr

Normalization of thin disc AVR (Eq 8)
σthin
R The velocity dispersion at 10 Gyr

Normalization of thin disc AVR (Eq 8)
σthick
φ The velocity dispersion of thick disc (Eq 8)
σthick
z The velocity dispersion of thick disc (Eq 8)
σthick
R The velocity dispersion of thick disc (Eq 8)
βR The exponent of thin disc AVR (Eq 8)
βz The exponent of thin disc AVR (Eq 8)
βφ The exponent of thin disc AVR (Eq 8)
qthin The exponent of the

velocity dispersion profile for thin disc (Eq 8)
qthick The exponent of the

velocity dispersion profile for thick disc (Eq 8)
R0 Distance of Sun from the Galactic Center
v0 The circular velocity at Sun
αz A parameter for vertical fall of circular velocity
αR The radial gradient of circular velocity at Sun

and σz to be specified as

σz0(Rg, τ) =σz,�

(
τ + τmin

τmax + τmin

)βz
exp

[
−q(Rg −R0)

Rd

]
.(16)

Now this leaves us to choose Σ(Rg). This should be done
so as to produce discs that satisfy the observational constraint
given by Σ(R), i.e., an exponential disc (or discs) with scale
length Rd. A simple way to do this is to let

Σ(Rg) =
1

2πR2
d

exp

[
−Rg
Rd

]
. (17)

However, this matches the target surface density only approx-
imately. A better way to do this is to use the empirical formula
proposed in Sharma & Bland-Hawthorn (2013) such that

Σ(Rg) =
e−Rg/Rd

2πR2
d

−
0.00976a2.29

0

R2
d

s

[
Rg

(3.74Rd(1 + q/0.523)

]
(18)

where s is a function of the following form

s(x) =ke−x/b((x/a)2 − 1), (19)

with (k, a, b) = (31.53, 0.6719, 0.2743). This is the scheme
that we employ in this paper.

2.3. Model for circular velocity
So far we have described kinematic models in which the

circular velocity is constant. However, the circular velocity
can have both a radial and a vertical dependence. We model
it as follows.

vc(R, z) =

√
R
∂Φ

∂R
= (v0 + αRR)

1

1 + αz|z|1.34
(20)

The parameters αR and αz control the radial and vertical de-
pendence respectively. The motivation for the vertical term
comes from the fact that the above formula with αz = 0.0374
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FIG. 1.— Circular velocity as a function of height z above the mid plane for
models of the Milky Way consisting of bulge, halo and disc. The non solid
red lines are for the fitting formula with different values of αz . The larger the
αz the steeper is the fall of circular velocity.

provides a good fit to the vc(R�, z) profile of Milky Way po-
tential by Dehnen & Binney (1998a) as well as Law & Ma-
jewski (2010) (see Figure 1). Both of them have bulge, halo
and discs. The former has two double exponential discs while
the later has a Miyamoto-Nagai disc. Setting αz > 0.03744
one can also approximately take into account the increase of
asymmetric drift of a mono age population as a function of
height z. This can be easily incorporated by changing vc to
vc(R, z) in Equation (5) for a Gaussian model and in Equa-
tion (13) for Shu model. Strictly speaking, for the Shu model
the above prescription is correct only for αR = 0. When a ra-
dial dependence is present, P (R,Rg) is no longer analytical
(Sharma & Bland-Hawthorn 2013). However, in this paper
we are mainly interested in cases where αR is either zero or
small and the above prescription should be a good first order
estimate.

2.4. Models and parameters explored
We now give a description of the parameters and mod-

els that we explore. We investigate up to 18 parameters
(see Table 1 for a summary). These are the Solar motion
(U�, V�,W�), the logarithmic slope of age-dispersion re-
lations (βR, βz, βφ), the logarithmic slope of radial depen-
dence of velocity dispersions (qthin, qthick), the velocity dis-
persions at R = R0 of the thin disc (σthin

φ , σthin
z , σthin

R ) and
the thick disc (σthick

φ , σthick
z , σthick

R ); for simplicity the sub-
script � is dropped here. The Gaussian models are denoted
by GU whereas models based on the Shu DF are denoted by
SHU. For models based on the Shu DF, the azimuthal motion
is coupled to the radial motion, hence βφ, σthin

φ and σthick
φ are

not required. When the circular velocity is kept fixed we as-
sume its value to be 226.84 km s−1. In some cases, we also
keep the parameters βz and qthin fixed. While reporting the
results we highlight the fixed parameters using the magenta
color.

In our analysis the distance of the Sun from the galactic
center, R0, is assumed to be 8.0 kpc. To gauge the sensitiv-
ity of our results to R0, we also provide results for cases with
R0 = 7.5 and 8.5 kpc. The true value of R0 is still debatable
ranging from 6.5 to 9 kpc. Recent results from studies of or-
bit of stars near the Galactic Center give R0 = 8.33 ± 0.35

(Gillessen et al. 2009). The classically accepted value of
8 ± 0.5 kpc is a weighted average given in a review by Reid
(1993). The main reason we keep R0 fixed is as follows.
Given that we do not make use of explicit distances, proper
motion or external constraints like proper motion of Sgr A*
star, it is clear we will not be able to constrain R0 well, spe-
cially if vc is kept free. For example McMillan & Binney
(2010) using parallax, proper motion and line of sight velocity
of masers in high star forming regions, show that constraining
both v0 and R0 independently is difficult.

3. OBSERVATIONAL DATA AND SELECTION FUNCTIONS

In this paper we analyze data from two surveys, the Radial
Velocity Experiment, RAVE (Steinmetz et al. 2006; Zwitter
et al. 2008; Siebert et al. 2011; Kordopatis et al. 2013) and
the Geneva Copenhagen Survey, GCS (Nordström et al. 2004;
Holmberg et al. 2009). For fitting theoretical models to data
from stellar surveys, it is important to take into account the se-
lection biases that were introduced when observing the stars.
This is especially important for spectroscopic surveys which
are not unbiased and observe only a subset of the all possi-
ble stars defined within a color-magnitude range. So we also
analyze the selection function for the RAVE and GCS survey.

3.1. RAVE survey
The RAVE survey collected spectra of 482430 stars be-

tween April 2004 and December 2012 and stellar parame-
ters, radial velocity, abundance and distances have been de-
termined for 425561 stars. In this paper we used the internal
release of RAVE from May 2012, which consisted of 458412
observations. The final explored sample after applying var-
ious selection criteria consists of 280128 unique stars. This
data is available in the DR4 public release (Kordopatis et al.
2013) where an extended discussion of the sample is also pre-
sented.

For RAVE we only make use of the `, b and vlos of stars.
The IDENIS and 2MASS J−Ks colors are used for marginal-
ization over age, metallicity and mass of stars taking into ac-
count the photometric selection function of RAVE. We do not
use proper motions, or stellar parameters which could in prin-
ciple provide tighter constraints, but then one has to worry
about the systematics introduced by their use. For example,
in a recent kinematic analysis of RAVE stars by (Williams
et al. 2013), they found systematic differences between differ-
ent proper motion catalogs like PPMXL (Röser et al. 2008),
SPM4 (Girard et al. 2011) and UCAC3 (Zacharias et al.
2010). As for stellar parameters, although they are reliable,
but no pipeline can claim to be free of unknown systematics
specially when working with low signal to noise data. Hence,
as a first step it is always instructive to work with data that
is least ambiguous and then in the next step check the results
by adding more information. As we will show later, for the
type of models that we consider even using only `, b and vlos

can provide sufficiently good constraints on the model param-
eters.

We now discuss the selection function of RAVE. The RAVE
survey was designed to be a magnitude-limited survey in the
I band. This means that theoretically it has one of the sim-
plest selection functions although, in practice, for a multitude
of reasons, some biases were introduced. First, the DENIS
and 2MASS surveys were not fully available when the survey
started. Hence, the first input catalog (IC1) had stars from Ty-
cho and SuperCOSMOS. For Tycho stars, I magnitudes were
estimated from VT and BT magnitudes. On the other hand,
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the SuperCOSMOS stars had I magnitudes but an offset was
later detected with respect to IDENIS. Later on, as DENIS and
2MASS became available, the second input catalog IC2 was
created. With the availability of DENIS, it became possible to
have a direct I mag measurement which was free from offsets
like those observed in SuperCOSMOS. But DENIS itself had
its own share of problems – saturation at the bright end, dupli-
cate entries, missing stripes in the sky, inter alia. To solve the
problem of duplicate entries, the DENIS catalog was cross-
matched with 2MASS to within a tolerance of 1′′. This helped
clean up the color-color diagram of (IDENIS − K2MASS) vs
(J2MASS −K2MASS) in particular (Seabroke 2008).

Given this history, the question arises how can we compute
the selection function. Since accurate I mag photometry is not
available for IC1, the first cut we make is to select stars from
IC2 only. Then we removed the duplicates– among multiple
observations one of them was selected randomly. To weed
out stars with large errors in radial velocity, we made some
additional cuts:

Signal to Noise STN > 20

Tonry −Davis Correlation Coefficient > 5.

For brighter magnitudes, IDENIS < 10, IDENIS suffers
from saturation effects. One could either get rid of these stars
to be more accurate or ignore the saturation. In the present
analysis we ignore the saturation effects. Note, the observed
stars in the input catalog are not necessarily randomly sam-
pled from the IC2. Stars were divided into four bins in Imag

and stars in each bin were randomly selected to observe at a
given time. However it seems later on this division was not
strictly maintained (probably due to the observation of cal-
ibration stars and some extra stars going to brighter magni-
tudes). This means the selection function has to be computed
as a function of IDENIS in much finer bins. Assuming the
DENIS I magnitudes are correct and the cross-matching is
correct, the only thing that needs to be taken into account
is the angular completeness of the DENIS survey (missing
stripes). To this end, we grid the observed and IC2 stars in
(`, b, IDENIS) space and compute a probability map. To grid
the angular co-ordinates we use the HEALPIX pixelization
scheme (Górski et al. 2005). The resolution of HEALPIX is
specified by the number nside and the total number of pix-
els is given by 12n2

side. For our purpose, we use nside = 16

which gives a pixel size of 13.42 deg2, which is smaller than
the RAVE field of view of 28.3 deg2. For magnitudes, we use
a bin size of 0.1 mag, which again is much smaller than the
magnitude ranges employed for each observation. Given the
fine resolution of the probability map, the angular and magni-
tude dependent selection biases are adequately handled. Note,
in the range (225◦ < ` < 315◦)&(5◦ < |b| < 25◦), a color
selection of (J − Ks) > 0.5 was used to selectively target
giants, and we take this into account in our analysis.

Arce & Goodman (1999) suggest that the Schlegel et al.
(1998) maps overestimate reddening by a factor of 1.3-1.5 in
regions with smooth extinctionAV > 0.5, i.e., EB−V > 0.15
(see also Cambrésy et al. 2005). In Figure 2 the color and
temperature distribution of RAVE stars that we analyze are
compared with predictions from Galaxia given the selection
above. First we compare the red and black lines. It can be seen
that the temperature and color distributions match up well at
high latitudes. However, at low latitudes the model color dis-
tribution is shifted to the right. The fact that the temperature
distribution at low latitude do not show such a shift suggests
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FIG. 2.— The color and temperature distribution (from DR3 pipeline) of
RAVE stars compared with Galaxia simulations with properly matched se-
lection and statistical sampling. The effect of our new correction formula for
the Schlegel extinction map is also shown. The results for |b| < 25◦ and
|b| > 25◦ are shown separately.

that the problem is related to the modelling of extinction. To
account for this we modify the Schlegel EB−V as follows

fcorr = 0.6 + 0.2

(
1− tanh

[
EB−V − 0.15

0.1

])
(21)

The formula above reduces extinction by 40% for high extinc-
tion regions; the transition occurs around EB−V ∼ 0.15 and
is smoothly controlled by the tanh function. It can be seen
that the proposed correction to Schlegel maps, although not
perfect, reduces the discrepancy between the model and data
for low latitude stars (top panel). The effect of the correction
is negligible for high latitude stars as expected (second panel).

In Figure 2, we applied only an IDENIS magnitude se-
lection, the fact that the temperature and color distributions
match up so well is encouraging. This means that the spa-
tial distribution of stars as specified in the Galaxia model do
satisfy one of the necessary observational constraint.

3.2. GCS survey
The GCS stars were sampled as in Sharma et al. (2011).

We use the data from the Geneva-Copenhagen Survey, GCS,
(Nordström et al. 2004; Holmberg et al. 2009), which is a
selection of 16682 F and G type main-sequence stars, out
of which velocities and temperatures are available for 13382
stars. We found that while Galaxia predicts less than one
halo star in the GCS sample for a distance less than 120 pc,
when plotted in ([Fe/H], vy) plane, the GCS has 29 stars with
[Fe/H] < −1.2 that have highly negative values of vy (as ex-
pected for halo stars). Just like Schönrich et al. (2010), we
identify these as halo stars and exclude them from our analy-
sis.

The GCS catalog is complete for F and G type stars for a
volume given by r < 40 pc and V ∼ 8 in magnitude; within
these limits there are only 1342 stars. But GCS being a color



8

100 200 300
Longitude (degree)

-50

0

50

L
a

ti
tu

d
e

 (
d

e
g

re
e

)

100 200 300
Longitude (degree)

-50

0

50

L
a

ti
tu

d
e

 (
d

e
g

re
e

)
-2.0 -1.5 -1.0 -0.5 0.0

log(ρ/ρmax)

2 4 6 8 10 12
Age (Gyr)

0

2

4

6

8

10

12

14

D
is

a
tn

c
e

 k
p

c

2 4 6 8 10 12
Age (Gyr)

0

2

4

6

8

10

12

14

D
is

a
tn

c
e

 k
p

c

-4.0 -3.0 -2.0 -1.0 0.0
log(ρ/ρmax)

FIG. 3.— Probability distribution of RAVE stars analyzed in this paper
in (`, b) space (Top) and (Age, Distance) space (Bottom). The age-distance
distributions are predictions from the Galaxia model for stars satisfying the
RAVE selection criteria.

magnitude limited survey, there is no need to restrict the anal-
ysis to a volume complete sample. In Nordström et al. (2004)
magnitude completeness as a function of color is provided and
we use this (their §2.2). There is some ambiguity about the
coolest dwarfs which were added for declination δ < −26◦;
from information gleaned from Nordström et al. (2004), we
could not find a suitable way to take this into account.

We also applied some additional restrictions on the sample.
For example, we restrict our analysis to stars with distance
less than 120 pc, so as to avoid stars with large distance errors.
The GCS survey selectively avoids giants. To mimic this we
use the following selection functionMV < 10(b−y)−3. The
predicted temperature distributions show a mismatch with
models, in particular, there are too many hot stars. Using
Casagrande et al. (2011) temperatures, which are more ac-
curate, we found an upper limit on Teff of 7244 K, which was
applied to the models.

After the above mentioned cuts, the final sample consisted
of 5201 stars. In Figure 4, we show the distribution of GCS
and model stars after applying the above mentioned selection
functions. The temperature distribution at the hot end still
shows some difference but the distance distribution is cor-
rectly reproduced. The age distribution is qualitatively correct
given that we do not convolve with uncertainties or take sys-
tematics into account. The peak in the model at 11 Gyr is due
to the thick disc having a constant age. The peaks in the data
at 0 and 14 Gyr are most likely due to caps employed while
estimating ages. The color distribution in GCS shows a peak
at around b − y = 0.3, which could be due to an unknown
selection effect. The bump at b− y ∼ 0.43 which is also seen
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FIG. 4.— Distribution of GCS stars as a function of color, temperature,
distance and age. Shown alongside are results of a mock sample created using
Galaxia but without observational uncertainties. The top panel shows the
distribution in the (b−y,MV ) plane; the colors span the range 0.205 < (b−
y) < 0.5. The magnitude limits are a function of color and are taken from
Nordström et al. (2004). The line represents the equationMV = 10(b−y)−
3 and is used to mimic the selective avoidance of giants in GCS. A selection
of d < 0.12 kpc and Teff > 7244 K is also applied. The temperature and
ages (maximum likelihood Padova) are from Casagrande et al. (2011).

in models is due to turnoff stars. Overall, we think our mod-
elling reproduces to a good degree the selection function of
the GCS stars.

4. MODEL FITTING TECHNIQUES

If yi are the observed properties of a star, we can describe
the observed data by y =

{
yi ∈ Rd, 0 < i < N

}
. Also, let θ

be the set of parameters that define the model. Our job is to
compute

p(θ|y) ∝ p(y|θ)p(θ) (22)

where p(y|θ) =
∏
i p(yi|θ). We employ an MCMC scheme

to estimate p(θ|y) and assume a uniform prior on θ. We now
discuss how to compute p(yi|θ).

Generally, a model of a galaxy gives the probability den-
sity p(r,v, τ, Z,m|θ). For RAVE, the observed quantities are
vlos, l and b, while for GCS it is l, b, r, vl, vb and vlos. Since
quantities like τ, Z and m are not known, one has to compute
the marginal probability density by integration. For RAVE,
the required marginal density is

p(`, b, vlos|θ) =

∫
p(`, b, r, τ, Z,m, vl, vb, vlos|θ)×

S(`, b, τ, Z,m) dr dτ dZ dm dvl dvb,(23)

and for GCS it is

p(`, b, r, vl, vb, vlos|θ) =

∫
p(`, b, r, τ, Z,m, vl, vb, vlos|θ)×

S(`, b, τ, Z,m) dτ dZ dm. (24)
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Here S(`, b, τ, Z,m) is the selection function specifying how
the stars were preselected in the data. The actual selection is
on photometric magnitude which in turn is a function of τ, Z
and m.

For the kinds of models explored here, the computations are
considerably simplified due to the fact that

p(`, b, r, τ, Z,m, vl, vb, vlos|θ) =p(vl, vb, vlos|`, b, r, τ, θ)×
p(`, b, r, τ, Z,m|θS), (25)

for which θS is the set of model parameters that govern the
spatial distribution of stars and θ is the set of model parame-
ters that govern the kinematic distribution of stars. The term
p(`, b, r, τ, Z,m|θS) is invariant in our analysis, and this is the
main assumption that we make. In other words we assume
a star formation history (SFR), initial mass function (IMF),
scale length of disc, an age-scale height relation and an age-
metallicity relation for the disc. This can be constrained by
the photometry of the stars. The p(vl, vb, vlos|`, b, r, τ, θ) rep-
resents the kinematics which is what we explore. It should
be noted that the model p(`, b, r, τ, Z,m|θS) that we use has
been shown to satisfy the number count of stars (Robin et al.
2003; Sharma et al. 2011). Ideally, in a fully self consistent
model, the scale height is related to the stellar velocity disper-
sion and this is something we would like to address in future.

We can now integrate the first term in Equation (25) overm
and Z such that

p(`, b, r, vl, vb, vlos, τ |θ) =p(vl, vb, vlos|`, b, r, τ, θ)×
p(`, b, r, τ |θS , S) (26)

where

p(`, b, r, τ |θS , S) =

∫ ∫
p(`, b, r, τ, Z,m|θS)×

S(`, b, τ, Z,m) dZ dm. (27)

The term p(`, b, r, τ |θS , S) is computed numerically using the
code Galaxia (Sharma et al. 2011). Galaxia, uses isochrones
from the Padova database to compute photometric magnitude
of the model stars (Marigo et al. 2008; Bertelli et al. 1994).
We first generate a fiducial set of stars satisfying the color
magnitude range of the survey. Then we apply the selection
function and reject stars that do not satisfy the constraints of
the survey. The accepted stars are then binned in (`, b, r, τ)
space. Since, the GCS is local to Sun, we use the following
approximation p(`, b, r, τ |θS , S) ∝ p(τ |θS , S). The proba-
bility distribution in (`, b, r, τ) space for RAVE is shown in
Figure 3.

For RAVE, we have to integrate over four variables
(r, τ, vl, vb), but for GCS we integrate over only τ . The
4D marginalization for RAVE poses a serious computa-
tional challenge for data as large as the RAVE survey. For
Gaussian distribution functions, the integral over vl and
vb can be carried out to give an analytic expression for
p(vlos|`, b, r, τ, Z, θ), but in general it cannot be done. Hence,
we try two new methods. The first method is fast but has
inflated uncertainties. The second method is slower to con-
verge but gives correct estimates of uncertainties. Given these
strengths and limitations, we use a combined strategy that
makes best use of both the methods.

We use the first ‘sampling and projection’ method to get an
initial estimate of θ and also its covariance matrix. These are
then used in the second ‘data augmentation’ method. The ini-
tial estimate reduces the ‘burn in’ time, while the covariance

matrix eliminates the need to tune the widths of the proposal
distributions. In general we use an adaptive MCMC scheme,
which avoids manual tuning of the widths of the proposal dis-
tributions (Andrieu & Thoms 2008). At regular intervals, we
compute the covariance matrix and scale it so as to achieve
the desired acceptance ratio for the given number of parame-
ters Gelman et al. (1996). We now discuss the two methods
in more detail.

4.1. MCMC using sampling and projection
Instead of doing the computationally intensive marginal-

ization, we generate a sample of stars by Monte Carlo sam-
pling satisfying the given distribution function and the selec-
tion function. Taking a histogram of these stars in (`, b, vlos)
space then gives p(`, b, vlos|θ). We then run a Markov Chain
Monte Carlo simulation to estimate the likelihood distribu-
tion of the model parameters. Note that, given the stochas-
tic nature of our model distribution function, the standard
Metropolis-Hastings algorithm had to be altered to avoid the
simulation from getting stuck at a stochastic maximum of the
likelihood.

4.2. MCMC using data augmentation
Instead of marginalizing one can treat the nuisance pa-

rameters as unknown parameters and estimate them along-
side other parameters. This constitutes what is known as, a
sampling based approach for computing the marginal densi-
ties, the basic form of this scheme was introduced by Tanner
& Wong (1987) and later on extended in (Gelfand & Smith
1990). Let x =

{
xi ∈ Rd, 0 < i < N

}
be an extra set of

variables that are needed by the model to compute the proba-
bility density. Then we can write

p(θ, x|y) = p(x, y|θ)p(θ). (28)

where p(x, y|θ) =
∏
i p(xi, yy|θ), and p(xi, yi|θ) is a func-

tion which is known and relatively easy to compute. For
example, for the RAVE data yi = {li, bi, vi,los} and x =
{ri, τi, vi,l, vi,b}. Due to the unusually large number of pa-
rameters, it is difficult to get satisfactory acceptance rates with
the standard Metropolis-Hastings scheme without making the
widths of the proposal distributions extremely small. Thus
the chains would take an unusually long time to mix. To solve
this, one uses the Metropolis scheme with Gibbs sampling
(MWG) (Tierney 1994). The MWG scheme is also useful
for solving hierarchical Bayesian models, and its application
for 3D extinction mapping is discussed in Sale (2012). In
our case, the Gibbs step consists of first sampling x from the
conditional density p(x|y, θ) and then θ from the conditional
density p(θ|y, x). The sampling in each Gibbs step is done
using the Metropolis-Hastings algorithm.

4.3. Tests using synthetic data
We now run tests where the data is sampled from the dis-

tribution function and then fitted using the MCMC machin-
ery. These tests serve two main purposes. First, they deter-
mine if our MCMC scheme works correctly or not. Secondly,
they tell us which parameters can be recovered and with what
accuracy. We study two classes of models based on (1) the
Gaussian DF and (2) the Shu DF. Additionally, we study two
types of mock data, one corresponding to the RAVE survey
and the other to the GCS survey. For GCS we also study mod-
els where vc is fixed. Altogether this leads to 6 different types
of tests.
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The results of these tests are summarized in Tables 2 and
3. The difference of a parameter p from input values divided
by uncertainty σp measures the confidence of recovering the
parameter. To aid the comparison, we color the values if
they differ significantly from the input values: |δp|/σp < 2
(black), 2 < |δp|/σp < 3 (blue). It can be seen that all param-
eters are recovered within the 3σ range as given by the error
bars. Ideally to check the systematics, the fitting should be
repeated multiple times and the mean values should be com-
pared with input values. However, the MCMC simulations
being computationally very expensive we report results with
only one independent data sample for each of the test cases.

It can be seen that GCS type data cannot properly constrain
vc. This is because the GCS sample is very local to the Sun.
Keeping vc free also has the undesirable effect of increasing
the uncertainty of qthin and qthick. For Gaussian models, it is
easy to see from Equation (5) that the effect of changing vc

can be compensated by a change in qthin and qthick. Given
these limitations, when analyzing GCS we keep vc fixed to
226.87 km s−1, a value that was used by Sharma et al. (2011)
in the Galaxia code.

The Solar motion is constrained well by both surveys, but
better by RAVE. The RAVE is also clearly better in constrain-
ing thick disc parameters than GCS, mainly because the GCS
has very few thick disc stars (Galaxia estimates it to be 6%
of the overall GCS sample). Across all parameters, for Shu
models βz is the only parameter which is constrained better
by GCS than by RAVE. This is because RAVE only has radial
velocities. This means that only those stars that lie towards
the pole can carry meaningful information about the vertical
motion, and such stars constitute a much smaller subset out of
the whole RAVE sample. This suggests that one can use the
βz value from GCS when fitting the RAVE data, as we show
below.

5. CONSTRAINTS ON KINEMATIC PARAMETERS

First, we discuss the fiducial parametric model for the
Galaxy developed a decade ago by Robin et al. (2003). The
so-called Besançcon model is based on Gaussian velocity el-
lipsoid functions. In the Galaxia code, the tabulated functions
of Robin et al. (2003) were replaced by analytic expressions,
the parameters of which are given in Table 4. One main differ-
ence between the Galaxia and Besançon models is the value
of R0 and the Solar motion with respect to the LSR. Also,
Galaxia uses slightly different values of q. The q values corre-
sponding to R0 = 8.0 kpc for the Besançon model are shown
in brackets. In the Besançon model, the velocity dispersions
are assumed to saturate abruptly at around τsat6.5 Gyr. More-
over, the velocity dispersion of the thick disc does not have
any radial dependence, hence the value of qthick only con-
tributes to the calculation of the asymmetric drift. Neither of
these Ansätze are assumed in our analysis.

Finally, in the Besançon model, the metallicity [Fe/H] of the
thick disc is assumed to be -0.78 with a spread of 0.3 dex. The
spread is not taken into account when assigning magnitude
and color from isochrones. This was done so as to prevent the
thick disc from having a horizontal branch. We do not make
this ad hoc assumption. Since our data do not have a strong
color-sensitive selection, this has a negligible impact on our
kinematic study.

We now discuss the results obtained from fitting models to
the RAVE and the GCS data. The best-fit parameters and their
uncertainties obtained using MCMC simulation for different
models and data are shown in Table 5 and Table 6. We begin

TABLE 2
TESTS ON MOCK DATA: CONSTRAINTS ON MODEL PARAMETERS WITH
GAUSSIAN DISTRIBUTION FUNCTION. THE MODEL RUNS ARE NAMED
AS FOLLOWS; SURVEY NAME AS RAVE OR GCS, TYPE OF MODEL AS
GU FOR GAUSSIAN AND SHU FOR SHU. VELOCITIES ARE IN km s−1

AND DISTANCES IN kpc

Model GCS GU GCS GU RAVE GU Input
U� 11.12+0.43

−0.41 11.17+0.39
−0.39 11.22+0.15

−0.16 11.1

V� 5.8+1.8
−1.9 8.6+1.3

−1.3 8.16+0.29
−0.24 7.5

W� 7.14+0.19
−0.19 7.35+0.19

−0.18 7.377+0.092
−0.087 7.25

σthin
φ 28.8+1.1

−1 28.4+1.1
−1.1 27.7+0.42

−0.5 28.3

σthin
z 25.03+0.86

−0.84 25.89+0.87
−0.86 25.09+0.6

−0.72 25

σthin
R 38.5+1.7

−1.6 42.7+1.6
−1.6 40.45+0.56

−0.84 40

σthick
φ 47.8+3.1

−2.9 43.7+3.2
−3.1 42.02+0.45

−0.4 42.4

σthick
z 34.1+2.3

−2.1 32.8+2.3
−2.3 35.19+0.58

−0.52 35

σthick
R 63.3+3.8

−3.8 55.3+4.2
−4 60.62+0.55

−0.68 60

βR 0.183+0.025
−0.025 0.249+0.021

−0.023 0.2079+0.0094
−0.015 0.2

βz 0.38+0.022
−0.022 0.401+0.02

−0.022 0.368+0.025
−0.03 0.37

βφ 0.216+0.023
−0.022 0.197+0.022

−0.023 0.177+0.013
−0.016 0.2

qthin 0.36+0.17
−0.16 0.14+0.19

−0.15 0.18+0.012
−0.014 0.18

qthick 0.267+0.099
−0.086 0.33+0.16

−0.19 0.3352+0.0072
−0.0072 0.33

v0 233 265+63
−60 236+1.7

−1.4 233

R� 8 8 8 8

αz 0.047 0.047 0.0432+0.0015
−0.0019 0.047

αR 0 0 0 0

χ2 1.09 1.00 0.935

TABLE 3
TESTS ON MOCK DATA: CONSTRAINTS ON MODEL PARAMETERS WITH

SHU DISTRIBUTION FUNCTION

Model GCS SHU GCS SHU RAVE SHU Input
U� 11.28+0.42

−0.41 11.16+0.42
−0.41 11.27+0.12

−0.14 11.1

V� 7.14+0.34
−0.36 7.35+0.79

−0.67 7.94+0.17
−0.15 7.5

W� 6.95+0.19
−0.2 6.99+0.2

−0.2 7.26+0.079
−0.088 7.25

σthin
z 25.18+0.84

−0.84 24.9+0.95
−0.92 24.62+0.81

−0.65 25

σthin
R 41+1.1

−1.1 40.7+1.1
−1.2 41.19+0.47

−0.6 40

σthick
z 36.8+2.6

−2.4 32.3+2.4
−2.5 34.3+0.52

−0.51 35

σthick
R 45.2+3.6

−3.5 44.3+3.9
−4 46.1+0.61

−0.58 45

βR 0.203+0.016
−0.016 0.201+0.017

−0.017 0.211+0.01
−0.013 0.2

βz 0.379+0.021
−0.021 0.371+0.023

−0.024 0.331+0.036
−0.025 0.37

qthin 0.174+0.018
−0.019 0.186+0.038

−0.027 0.1706+0.0068
−0.0066 0.18

qthick 0.333+0.04
−0.039 0.326+0.044

−0.041 0.3268+0.0063
−0.0068 0.33

v0 233 224+33
−20 235.1+1.3

−1.3 233

R� 8 8 8 8

αz 0.047 0.047 0.0427+0.0019
−0.0018 0.047

αR 0 0 0 0

χ2 0.960 0.996 0.928

by discussing results from the Gaussian distribution function
before proceeding to the Shu distribution function.

5.1. Gaussian models
First we concentrate on GCS data (column 1 of Table 5).

For GCS we find that all the values are well constrained.
However, percentage wise qthin, qthick and V� have larger
uncertainties as compared to other parameters. In Figure 5,
where fits from column 1 are plotted it can be seen that the
model is an acceptable fit to the data. The reduced χ2 values
are quite high especially in comparison to the mock models.
This is mainly due to significant amount of structure in (U, V )
velocity space (see Figure 5). The βz , σthin

z , σthick
z and σthick

R
parameters are close to the corresponding Besançon values
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TABLE 4
FIDUCIAL MODEL PARAMETERS: VELOCITY IN UNITS OF km s−1

Model Galaxia Besançon
U� 11.1 10.3

V� 12.24 6.3

W� 7.25 5.9

σthin
φ 32.3 32.3

σthin
z 21 21

σthin
R 50 50

σthick
φ 51 51

σthick
z 42 42

σthick
R 67 67

βR 0.33 0.33

βz 0.33 0.33

βφ 0.33 0.33

τsat 6.5 Gyr 6.5 Gyr
qthin 0.33 0.24(0.285)

qthick 0.33 0.44(0.5)

R0 8.0 kpc 8.5 kpc
vc(R0) 226.84 220.0

but other show differences. The most notable differences are
that our value for qthin is higher, qthick is lower and so is
σthick
φ . Other minor differences are as follows. Our βR and βφ

are lower and so are the velocity dispersions σthin
R , σthin

φ . The
thin disc velocity dispersions are strongly correlated to β val-
ues, so fixing β to higher values will drive the corresponding
thin disc velocity dispersions closer to the Besançon values.
The second column in Table 5 shows the results for the case
where a separate thick disc is not assumed (the thick disc stars
are labelled as thin disc in the model). In this case, β, σ and
qthin are found to increase, , which is expected since the thin
disc has to accommodate for the warmer thick disc compo-
nent.

We now discuss results for the RAVE data, beginning with
the model where αz = 0 (column 4 of Table 5). Surprisingly,
qthin is found to be negative, whereas the qthick is positive.
The value of v0 is found to be significantly less than that re-
ported in literature. The βR and βφ values are also too small.
We note that the βz value in RAVE has more uncertainty than
that in GCS, which we had also noted in the tests on mock
data. From now on we keep βz = 0.37, a value we get in
GCS. We checked and found that fixing βz has negligible im-
pact on other parameters.

We now let αz free and this results in higher value of v0.
The Ω� is now close to Sgr A* proper motion. Allowing for
a vertical dependence of effective circular velocity increases
qthin, βR and βφ. However, these values are still too low com-
pared to GCS values. It can be seen from red lines in Figure 6
that the model does not fit well the projected V component of
the velocity. Clearly there are some problems with this model.

We now compare RAVE and GCS results using columns
6 and 3 where we fix qthin, qthick, αz to values that we will
later get from Shu model. Having the same value of q in both
RAVE and GCS makes it easier to compare the other param-
eters. Note, fixing some of the variables generally leads to an
increased χ2 and this is expected since we are moving away
from best fit values. We find that most of the values agree to
within 4σ of each other. The two exceptions are βφ and V�
which are higher for GCS.

To summarize, we find that the model parameters that best
fit the RAVE data show important differences from those for
GCS. The models differ mostly in their values of qthin and

qthick, with the RAVE values being systematically too low.
If qthin and qthick are fixed to be same then V� in RAVE is
found to be lower by about 2 km s−1. The βφ and βR are also
slightly lower in RAVE and are better constrained than βz .

5.2. Shu models
First, we discuss RAVE results for the case where most of

the parameters were kept free (column 6 of Table 6). We find
that qthin is positive and well above zero unlike for the Gaus-
sian model. It can be seen from Figure 6 that the wings of the
V component of velocity are fit better by the Shu model as
compared to the Gaussian model. Another important feature
is that σR for the thick disc is almost the same as that of the
thin disc. The σz values are also not too far apart. Apparently,
as compared to Gaussian model, the velocity dispersions for
the thick disc are very similar to that of old thin disc in the
Shu model. However, qthick is larger than qthin. If αz is set to
zero then v0 is found to be underestimated (column 4). Setting
the prior of Sgr A* proper motion also allows to constrain the
radial gradient of circular velocity which is found to be less
than 1 km s−1 kpc−1 (column 7). Comparing, columns 5 and
6 it can be seen that fixing βz to 0.37 mainly changes σthin

z
while the other parameters are relatively unaffected.

The thick disc parameters for the GCS sample (column 1 of
Table 6) differ significantly from those of RAVE sample. This
is mainly due to the GCS having very few thick disc stars. We
next fix qthick = 0.33 and qthin = 0.1825 for GCS. Doing
so improves the agreement between the two sets for thick disc
while the change in χ2 is very little (column 2). Most RAVE
parameters agree to within 4σ of GCS except for V�, which
is lower by about 2 km s−1 for RAVE. Finally we also test
models where the thick disc is ignored (column 3). As in the
case of Gaussian models, this leads to an increase in β, σ and
qthin.

In Figure 5 the best fit Gaussian and Shu models for GCS
are compared. Unlike RAVE both models provide good fits.
In fact to discriminate the models one requires a large number
of warm stars that can sample the wings of the V distributions
with adequate resolution. The GCS sample clearly lacks these
characteristics. Next, in Figure 7 we plot the GCS Shu model
alongside the RAVE Shu model (columns 2 and 6 of Table 6)
and compare them with the GCS velocities. It can be seen
that both are acceptable fits. However, the RAVE Shu model
slightly overestimates the right wing of the GCS V distribu-
tion. Note, in Figure 6 a slight mismatch at V ′ ∼ 0 can be
seen, the cause for this is not yet clear.

6. DISCUSSION

6.1. Correlations and degeneracies
Not all parameters are independent. The dominant correla-

tions are shown in Figure 10, Figure 11, Figure 12 and Fig-
ure 13 where pairwise posterior distributions of parameters
are plotted. The implication of any correlation is that a change
in one of the values also changes the other value without af-
fecting the quality of the fit. In other words, a precise value
of one correlated quantity needs to be known in order to de-
termine the other. We find that the β values are strongly cor-
related with the corresponding σthin values. This is mainly
because we do not have enough information in the data to es-
timate the ages of the stars. The model specifies the prior on
the ages of stars and the data gives the velocities. The de-
generacy reflects the fact that during fitting β can be adjusted
while keeping the mean velocity dispersion constant.
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TABLE 5
CONSTRAINTS ON MODEL PARAMETERS WITH THE GAUSSIAN DISTRIBUTION FUNCTION. PARAMETERS THAT DO NOT HAVE ERROR BARS WERE FIXED.
MISSING VALUES IMPLY PARAMETERS THAT ARE NOT APPLICABLE FOR THAT MODEL. THE MODEL RUNS ARE NAMED AS FOLLOWS; SURVEY NAME AS

RAVE OR GCS, TYPE OF MODEL AS GU FOR GAUSSIAN AND SHU FOR SHU. VELOCITIES ARE IN km s−1 AND DISTANCES IN kpc

Model GCS GU GCS GU GCS GU RAVE GU RAVE GU RAVE GU
U� 10.16+0.41

−0.42 10.28+0.43
−0.43 10.34+0.42

−0.42 11.66+0.16
−0.15 11.45+0.14

−0.14 11.25+0.15
−0.15

V� 6.6+1.3
−1.4 6.33+0.93

−0.97 9.68+0.26
−0.26 15.01+0.37

−0.42 8+0.3
−0.28 7.38+0.1

−0.12

W� 7.14+0.19
−0.18 7.11+0.19

−0.19 7.14+0.18
−0.18 7.692+0.099

−0.082 7.688+0.085
−0.091 7.625+0.088

−0.082

σthin
φ 27.12+0.89

−0.86 31.61+0.8
−0.79 27.83+0.88

−0.88 24.97+0.43
−0.36 25.56+0.33

−0.37 25.34+0.35
−0.33

σthin
z 23.74+0.79

−0.74 27.28+0.64
−0.63 23.89+0.79

−0.74 24.22+0.64
−0.47 25.69+0.22

−0.2 25.92+0.21
−0.2

σthin
R 41.2+1.4

−1.3 47+1.1
−1.1 41.5+1.4

−1.3 36.6+1
−1.1 39.26+0.67

−0.69 39.69+0.62
−0.65

σthick
φ 40.9+3.3

−3.1 40+2.9
−2.8 40.47+0.51

−0.48 37.16+0.5
−0.53 38.37+0.48

−0.54

σthick
z 38.5+2.8

−2.5 38.7+2.7
−2.6 40.55+0.46

−0.49 40.4+0.5
−0.5 39.41+0.48

−0.48

σthick
R 65.9+4.1

−3.7 67.7+2.7
−2.7 58.74+0.91

−0.79 58.43+0.86
−0.76 57.87+0.58

−0.56

βR 0.201+0.019
−0.019 0.268+0.015

−0.014 0.204+0.019
−0.019 0.06+0.023

−0.029 0.135+0.015
−0.015 0.164+0.012

−0.013

βz 0.36+0.02
−0.021 0.432+0.015

−0.016 0.365+0.02
−0.02 0.312+0.026

−0.02 0.37 0.37

βφ 0.271+0.019
−0.019 0.349+0.016

−0.015 0.284+0.019
−0.019 0.132+0.014

−0.013 0.17+0.012
−0.012 0.164+0.012

−0.012

qthin 0.43+0.11
−0.11 0.447+0.069

−0.068 0.1825 −0.139+0.02
−0.019 0.047+0.014

−0.013 0.1825

qthick 0.37+0.099
−0.087 0.33 0.281+0.011

−0.011 0.2266+0.0088
−0.0089 0.33

v0 226.84 226.84 233 207.2+1.9
−1.9 229.2+1.8

−2 234.1+1.4
−1.4

R� 8 8 8 8 8 8

αz 0 0 0.047 0 0.0738+0.0021
−0.0023 0.047

αR 0 0 0 0 0 0

χ2 RAVE 2.55 3.19 2.49 1.89 1.64 1.79
χ2 GCS 3.09 3.48 3.15 6.60 5.81 5.10

TABLE 6
CONSTRAINTS ON MODEL PARAMETERS WITH THE SHU DISTRIBUTION FUNCTION. SEE TABLE 5 FOR FURTHER DESCRIPTION.

Model GCS SHU GCS SHU GCS SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU
U� 10.02+0.39

−0.4 10.16+0.39
−0.4 10.23+0.39

−0.4 11.2+0.13
−0.13 10.92+0.13

−0.14 10.96+0.14
−0.13 11.05+0.15

−0.16

V� 9.95+0.3
−0.3 9.81+0.28

−0.28 9.83+0.3
−0.29 9.71+0.12

−0.11 7.53+0.16
−0.16 7.53+0.16

−0.16 7.62+0.13
−0.16

W� 7.14+0.19
−0.19 7.13+0.18

−0.19 7.12+0.18
−0.19 7.536+0.085

−0.086 7.542+0.089
−0.093 7.539+0.095

−0.09 7.553+0.086
−0.09

σthin
z 23.39+0.77

−0.73 23.63+0.85
−0.8 25.91+0.64

−0.6 26.85+0.85
−0.92 24.7+0.66

−0.66 25.73+0.21
−0.21 25.72+0.23

−0.25

σthin
R 38.14+0.98

−0.94 39.99+0.91
−0.91 42.71+0.83

−0.8 42.37+0.61
−0.66 39.78+0.81

−0.73 39.67+0.63
−0.72 39.56+0.66

−0.7

σthick
z 39+3.1

−3.3 32.6+2.3
−2.2 29.15+0.87

−0.79 34.66+0.61
−0.58 34.3+0.51

−0.57 34.48+0.54
−0.53

σthick
R 70.1+3.7

−5.5 45.9+1.8
−1.8 38.84+1.2

−0.96 42.31+1
−0.9 42.43+0.95

−1 43.23+0.96
−1.1

βR 0.213+0.014
−0.014 0.237+0.013

−0.013 0.273+0.011
−0.011 0.236+0.011

−0.011 0.198+0.014
−0.014 0.195+0.011

−0.013 0.192+0.012
−0.013

βz 0.361+0.02
−0.02 0.366+0.021

−0.021 0.415+0.016
−0.016 0.398+0.03

−0.029 0.328+0.027
−0.024 0.37 0.37

qthin 0.166+0.021
−0.021 0.1825 0.193+0.015

−0.015 0.1682+0.0071
−0.0071 0.1805+0.0086

−0.008 0.1825+0.0092
−0.0075 0.1809+0.0078

−0.0078

qthick 0.022+0.054
−0.016 0.33 0.389+0.011

−0.016 0.334+0.012
−0.014 0.332+0.012

−0.013 0.325+0.014
−0.012

v0 226.84 232 226.84 212.6+1.4
−1.3 232.8+1.7

−1.6 231.9+1.4
−1.5 235.02+0.86

−0.83

R� 8 8 8 8 8 8 8

αz 0 0.0471 0 0 0.048+0.0019
−0.0018 0.0471+0.0016

−0.0019 0.0471+0.0019
−0.0019

αR 0 0 0 0 0 0 0.67+0.25
−0.26

χ2 RAVE 2.07 1.80 2.40 1.52 1.43 1.42 1.42
χ2 GCS 3.85 3.86 4.08 5.15 5.57 5.42 5.46

The σthick
R is anti-correlated with qthick and σthin

R with
qthin. These two anti-correlations are stronger for the Shu
model as compared to the Gaussian model. To get a good es-
timate of q, which controls the radial gradient of dispersions,
ideally one would require a sample of stars distributed over
a large volume. In the absence of an extended sample the
constraint on q comes from the fact that it also determines
the asymmetric drift. The amount of asymmetric drift in-
creases with an increase in both σR and q (see Equation (5)).
If the asymmetric drift is fixed, this naturally leads to the anti-
correlation between q and σR. In the Shu model the effective
velocity dispersion

√
〈v2
R〉 is not only proportional to σR but

also increase with increase in q. So one can keep the effective
velocity dispersion constant by increasing q and decreasing

σR at the same time. This makes the anti-correlation in Shu
model stronger.

Also, V� is anti-correlated with qthin and this relation is
stronger for the Gaussian model. This makes it difficult to
determine V� and q reliably using the Gaussian models. The
Shu model does not have this problem because in it the az-
imuthal motion is coupled to the radial motion, so it has 3
fewer parameters, i.e., has less degree of freedom. This helps
to resolve the qthin − V� degeneracy.

When fitting Shu models to RAVE we find an anti-
correlation exists between thin and thick disc parameters, e.g.,
(σthin
R , σthick

R ), (σthin
z , σthick

z ) and (qthin, qthick). This mainly
because we do not have any useful information about the ages
in the data.



13

-100 -50 0 50 100

U km/s

0

50

100

150

N

-200 -100 0 100 200

U km/s

1

10

100

N
-100 -80 -60 -40 -20 0 20 40

V km/s

0

100

200

300

N

-200 -150 -100 -50 0 50 100

V km/s

1

10

100

1000

N

-40 -20 0 20 40

W km/s

0

100

200

300

N

-150 -100 -50 0 50 100 150

W km/s

1

10

100

1000

N

GCS

Gaussian

Shu

FIG. 5.— Comparison of model velocity distributions with that of GCS data. The right panels differ from the left only in range and scale of axes. The model
used is the best fit Gaussian (column 1 of Table 5) and the Shu model (column 1 of Table 6) for the GCS data. Both the models are acceptable fits to the data.
Significant structures can be seen in the velocity space.

We now discuss parameters v0 and αz which were kept free
only in RAVE data. The αz is correlated with v0 and anti-
correlated with V�. The v0 parameter is anti-correlated with
U� and correlated with qthin. For the GCS data, the (v0, qthin)
correlation is so strong that it is difficult to get meaningful
constraints on v0 so the later was kept fixed.

6.2. Solar peculiar motion
Among the three components of Solar motion, the U�

and W� are only weakly correlated with other variables and
give similar values for both Gaussian and Shu models. The
only major dependence of U� is for RAVE where it is anti-
correlated with v0 by about -0.5. So models with αz = 0 that
underestimate v0, will overestimate U�. For RAVE we get
W� = 7.54 ± 0.1 km s−1 and U� = 10.96 ± 0.14 km s−1

(column 6 of Table 6). GCS values for W� and U� are lower
by about 0.4 and 0.8 km s−1 respectively but their 3−σ range
matches with RAVE (column 2 of Table 6). The small mis-
match could be either due to large-scale gradients in the mean
motion of stars (Williams et al. 2013) in RAVE or due to kine-
matic substructures in GCS.

Our GCS results (column 2 of Table 6) are in excellent
agreement with Dehnen & Binney (1998b), but differ with
Schönrich et al. (2010) for U� by 1.0 km s−1. Neverthe-
less, U� is well within their quoted 2σ range. The RAVE

U� agrees with Schönrich et al. (2010). Interestingly, with
the aid of a model-independent approach, Schönrich (2012)
finds U� = 14.0 ± 0.3 km s−1 but with a systematic uncer-
tainty of 1.5 km s−1. The systematic errors in distances and
proper motion can bias this result. Additionally, the analyzed
sample not being local, their results can also be biased if there
are large-scale streaming motions.

We now discuss our results for V�. For Gaussian models
the estimated V� value depends strongly upon the choice of
q values and it is difficult to get a reliable value for either of
them. For the Shu model, V� depends upon if αz is kept fixed
or free. For αz = 0, the GCS and RAVE V� agree with each
other, but when αz is kept free RAVE V� is 2 km s−1 lower
than that of GCS (comparing columns 2 and 6 of Table 6). The
αz = 0 model not only has a higher χ2 but as we will discuss
later also yields a low value of v0, so we consider this model
less useful. The most likely cause for the difference between
RAVE and GCS V� is the significant amount of kinematic
substructures in the distribution of the V component of the
GCS velocities (Figure 7). It can be seen in Figure 7 that the
best fit RAVE model, in spite of apparently having low V�, is
still a good description of the GCS data. Moreover, in GCS a
dominant kinematic structure can be seen at V ∼ −20km s−1

(the Hyades and the Pleiades), lending further support to the
idea that GCS probably overestimates V�.
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FIG. 6.— Comparison of model velocity distributions with that of RAVE data. Projection of radial velocity along U, V and W directions are shown. The right
panels differ from the left only in range and scale of axes. The top panel is for stars with (|b| < 45)&((|l| > 45)||(|l − 180| > 45)), the middle panel is for
stars with (|b| < 45)&((|l| < 45)||(|l − 180| < 45)) and the bottom panel is for stars with |b| > 45. The model used is the best fit Gaussian (column 5 in
Table 5) and the Shu model (column 6 of Table 6) for the RAVE data. The Shu model clearly models the wings of V ′ better than the Gaussian model, especially
in region −200 km s−1 < V ′ < −150 km s−1 and V ′ > 80 km s−1 which is dominated by thick disc. A slight mismatch at V ′ ∼ 0 is also seen.

The need to revise the V� upwards from the value of 5.2
km s−1 given by Dehnen & Binney (1998b) has been exten-
sively discussed (McMillan & Binney 2010; Binney 2010;
Schönrich et al. 2010). Binney (2010) suggests a value of
11.0 km s−1 after randomizing some of the stars to reduce
the impact of streams while Schönrich et al. (2010) get V� =
12.24± 0.47 km s−1. Our RAVE value of V� = 7.5± 0.2 is
significantly lower that this (column 6 of Table 6). Our GCS
value of V� = 9.8 ± 0.3 km s−1 is also lower than both of
them (column 2 of Table 6).

Recently, Golubov et al. (2013) determined V� = 3.06 ±
0.68 by binning the local RAVE stars in color and metallicity
bins and applying an improved version of the Stromberg re-
lation. Although their estimate is on the lower side like ours,
but it is significantly lower than our estimates. The applica-
tion of the Stromberg relation demands the identification of
subpopulations that are relaxed, are in dynamical equilibrium
and have same value for the slope in the relation. The fact
that binning by color fails to satisfy this has already been dis-
cussed in Schönrich et al. (2010). Although the authors also
split the sample by metallicity but these bins are quite broad
and there is uncertainty associated with metallicity measure-
ments. Hence, a bias due to the selected subpopulations not

obeying the same linear relation can be expected.
The discrepancy for the GCS with Schönrich et al. (2010)

could be either due to differences in fitting methodologies or
differences in the models adopted, with the latter being the
most likely cause. The model used here and by Schönrich
et al. (2010) is based on the Shu distribution function but still
there are some important differences. For example, we have a
thick disc while they do not, and the forms of σR(L) and Σ(L)
differ. Our form of σR(L) is the same as that used by Binney
(2010) while Schönrich et al. (2010) compute σR(L) so as
to satisfy 〈v2

R,thin〉 ∝ e−R/1.5Rd . In our case 〈v2
R,thin〉(R)

depends implicitly upon q and β and both of these parameters
are constrained by data. The Σ(L) in Schönrich et al. (2010)
comes from a numerical simulation involving the processes
of accretion, churning and blurring while in our case it comes
directly from the constraint that Σ(R) ∝ exp(−R/Rd). The
prescription for metallicity in Schönrich et al. (2010) is also
very different from ours.

6.3. The circular velocity
In a recent paper, Bovy et al. (2012a) used data from the

APOGEE survey and analyzed stars close to the mid-plane
of the disc to find vc = 218 ± 6 km s−1 and V� = 26 ± 3



15

-100 -50 0 50 100

U km/s

0

50

100

150

N

-200 -100 0 100 200

U km/s

1

10

100

-100 -80 -60 -40 -20 0 20 40

V km/s

0

100

200

300

N

-200 -150 -100 -50 0 50 100

V km/s

1

10

100

1000

-40 -20 0 20 40

W km/s

0

100

200

300

N

-150 -100 -50 0 50 100 150

W km/s

1

10

100

1000

GCS

Shu-GCS

Shu-RAVE

FIG. 7.— Comparison of model velocity distributions with that of GCS data. The models used correspond to columns 2 and 6 of Table 6. These are Shu models
that a) best fit the GCS data but with a few parameters fixed and b) best fit the RAVE data. The positive wing of V is slightly overestimated by the RAVE best fit
model.

TABLE 7
INVESTIGATION OF SYSTEMATICS.

Model RAVE SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU RAVE SHU
Distance Offset 90% 110%
Iterations 200000.00 200000.00 200000.00 200000.00 200000.00 188501.00 70101.000
U� 10.96+0.14

−0.13 11.05+0.15
−0.16 10.81+0.15

−0.14 10.98+0.14
−0.15 11.01+0.13

−0.14 10.82+0.15
−0.14 10.73+0.13

−0.15

V� 7.53+0.16
−0.16 7.62+0.13

−0.16 7.39+0.14
−0.14 7.59+0.16

−0.14 8.26+0.15
−0.15 6.81+0.15

−0.16 6.99+0.15
−0.15

W� 7.539+0.095
−0.09 7.553+0.086

−0.09 7.52+0.085
−0.088 7.535+0.082

−0.089 7.553+0.078
−0.091 7.53+0.09

−0.083 7.52+0.087
−0.091

σthin
z 25.73+0.21

−0.21 25.72+0.23
−0.25 25.69+0.22

−0.2 25.67+0.23
−0.23 25.68+0.25

−0.21 25.77+0.18
−0.22 17.57+0.12

−0.11

σthin
R 39.67+0.63

−0.72 39.56+0.66
−0.7 39.27+0.56

−0.62 39.45+0.67
−0.61 39.23+0.74

−0.6 40.09+0.59
−0.49 31.21+0.11

−0.13

σthick
z 34.3+0.51

−0.57 34.48+0.54
−0.53 34.48+0.58

−0.56 34.66+0.52
−0.55 34.8+0.55

−0.6 33.8+0.55
−0.55 37.99+0.48

−0.46

σthick
R 42.43+0.95

−1 43.23+0.96
−1.1 42.98+0.86

−0.73 42.67+0.96
−0.72 43.51+0.85

−0.82 41.28+0.71
−0.94 48.6+0.55

−0.61

βR 0.195+0.011
−0.013 0.192+0.012

−0.013 0.188+0.01
−0.011 0.192+0.013

−0.012 0.188+0.013
−0.013 0.2018+0.01

−0.0093 0.01

βz 0.37 0.37 0.37 0.37 0.37 0.37 0.01

qthin 0.1825+0.0092
−0.0075 0.1809+0.0078

−0.0078 0.188+0.0086
−0.0086 0.1804+0.0071

−0.0066 0.2061+0.0094
−0.0079 0.1577+0.0073

−0.0068 0.2454+0.0082
−0.0059

qthick 0.332+0.012
−0.013 0.325+0.014

−0.012 0.339+0.01
−0.011 0.3149+0.0087

−0.012 0.339+0.01
−0.011 0.3297+0.013

−0.0091 0.2532+0.0073
−0.0072

v0 231.9+1.4
−1.5 235.02+0.86

−0.83 223.3+1.3
−1.4 242.5+1.6

−1.5 249.8+1.6
−1.5 218.9+1.5

−1.4 237.2+1.8
−1.5

R� 8 8 7.5 8.5 8 8 8

αz 0.0471+0.0016
−0.0019 0.0471+0.0019

−0.0019 0.0532+0.0017
−0.0017 0.0439+0.0016

−0.0017 0.0504+0.0018
−0.0018 0.0462+0.0016

−0.0018 0.0531+0.0018
−0.002

αR 0 0.67+0.25
−0.26 0 0 0 0 0
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km s−1. The resulting angular velocity Ω� = (vc + V�)/R0

agrees with the value of 30.24 ± 0.11 km s−1 kpc−1 as esti-
mated by Reid & Brunthaler (2004) using the Sgr A* proper
motion or as estimated by McMillan & Binney (2010) using
masers (Ω� in range 29.9-31.6 km s−1 kpc−1). However,
Bovy et al. (2012a) V� is about 14 km s−1 larger than what
has been measured in the solar neighborhood by GCS. As a
way to reconcile their high V�, Bovy et al. (2012a) suggest
that the LSR itself is rotating with a velocity of ∼ 12 km s−1

with respect to the RSR (rotational standard of rest as mea-
sured by circular velocity in an axis-symmetric approximation
of the full potential of the Milky Way).

For RAVE data, we get vc = 232 ± 1.7 and Ω� =
29.9±0.3km s−1 kpc−1 which agrees with the Sgr A* proper
motion of 30.24 ± 0.1. Hence, the RAVE data suggests that
the LSR is on a circular orbit and is consistent with RSR. Our
αz = 0.047 is slightly higher than the value of 0.0374 pre-
dicted by analytical models of the Milky Way potential. This
is expected because in our formalism, the parameter αz also
accounts for the increase in asymmetric drift with height. If
we explicitly put a prior on Ω�, then we have the liberty of
constraining one more parameter and we use it to constrain
the radial gradient of circular velocity αR. Doing so, we find
a small gradient of about 0.67 km s−1 kpc−1 (column 7 of
Table 6) and v0 increases to 235 km s−1.

We find that the parameter αz that controls the vertical de-
pendence of circular velocity plays an important role in deter-
mining v0. For models with αz = 0, v0 is underestimated and
we end up with v0 = 212 ± 1.4. This is in rough agreement
with Bovy et al. (2012a) but V� is not. The resulting angular
velocity Ω� is also much lower than the value obtained from
the proper motion of Sgr A*. On the contrary, if αz is kept
free then we automatically match the Sgr A* proper motion,
and we get a V� which is similar to the local GCS sample.

6.4. The age-velocity dispersion relation (AVR)
We now discuss our model predictions for the age veloc-

ity dispersion of the thin disc, specifically the parameters
βz, βφ, βR, σthin

z , σthin
φ and σthin

R . The σthin
φ,z,R values for both

GCS and RAVE are found to be in agreement with each other
and are similar for both Gaussian and Shu models. The GCS
βφ,R,z values were also similar for both Gaussian and Shu
models. The RAVE βR, using the Shu model, was also in
agreement with GCS. The βz was difficult to determine pre-
cisely with RAVE, so, we choose to use the corresponding
GCS value for it, while performing the fits. The RAVE βR,φ
values using the Gaussian model were systematically lower
than GCS values. Since the RAVE Gaussian model did not
fit the data well, we give less importance to its β values and
ignore them for the present discussion. Overall, results in col-
umn 1 of Table 5 provide a good representation of our pre-
dictions and are shown alongside other literature values in Ta-
ble 8.

We now discuss our results by comparing them with pre-
vious estimates. In the Besançon model, the age-velocity
dispersion relation for the thin disc was based on an anal-
ysis of Hipparcos stars by Gomez et al. (1997). Sharma
et al. (2011) fitted their tabulated values using analytical func-
tions and the values are given in Table 4. Binney et al.
(2000) also analyzed a subset of Hipparcos stars and showed
that the value of β (considering all the three velocity com-
ponents together) is around 0.33. In comparison, Just &
Jahreiß (2010) used Hipparcos stars to determine βz = 0.375.
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FIG. 8.— Velocity as a function of b − y Strömgren color for GCS stars.
The error bars were estimated from Poisson noise. Shown alongside are pre-
dictions from various models. Note, the color distribution was not taken into
account when fitting models to data.

Aumer & Binney (2009) reanalyzed the Hipparcos data and
found (βR, βφ, βz) = (0.307, 0.430, 0.445). Note, these val-
ues were estimated by fitting the velocity dispersion as a
function of color and only proper motion was used in the
analysis. Their method is sensitive to outliers which must
be corrected for prior to estimating the velocity dispersions.
Also, the non-Gaussian nature of the vφ distribution is not
taken into account. Finally, Nordström et al. (2004) find
(βR, βφ, βz) = (0.31, 0.34, 0.47) in the GCS data. Seabroke
& Gilmore (2007) using the same data suggest that error bars
are higher and that excluding Hercules stream increases βz
to 0.5. Holmberg et al. (2007) and Holmberg et al. (2009)
updated the data with new parallaxes and photometric cali-
brations and found (βR, βφ, βz) = (0.39, 0.40, 0.53).

Our values for β are significantly lower than previous stud-
ies (see Table 8). While uncertainty in ages remains a big
worry in the analysis of Holmberg et al. (2009), the difference
between our results with those of Aumer & Binney (2009) is
most likely due to different methods. The main difference be-
ing that unlike Aumer & Binney (2009) we fit the model to
all three velocity components. Also the density laws assumed
for distribution of stars in space are different. In Figure 8
we show the velocity dispersion as a function of Stroemgren
b − y color. We find that although we do not take color into
account, our fitted model correctly reproduces dispersion as a
function of color. The Shu model is found to overpredict σV
for (b− y) < 0.35 but only slightly.

We find that the values of β and σthin
R,φ,z (velocity disper-

sion in the Solar neighborhood for 10 Gyr old stars) varies
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TABLE 8
COMPARISON OF VALUES OF β AS ESTIMATED BY DIFFERENT SOURCES

Source βR βφ βz
Fit to Robin et al. (2003) 0.33 0.33 0.33
Nordstrom et al. (2004) 0.31± 0.05 0.34± 0.05 0.47± 0.05

Seabroke & Gilmore (2007) 0.48± 0.26

Holmberg et al. (2007) 0.38 0.38 0.54
Holmberg et al. (2009) 0.39 0.40 0.53
Aumer & Binney (2009) 0.307 0.430 0.445
Just and Jahreiss (2010) 0.375
Our GCS Thin only 0.27±0.02 0.35±0.02 0.43±0.02
Our GCS Thin+Thick 0.20±0.02 0.27±0.02 0.36±0.02
Our RAVE Thin+Thick 0.19±0.01 0.3-0.4
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FIG. 9.— Comparison of our age-velocity dispersion relation (solid line)
with that of Minchev et al. (2013) (black points). The slopes used are βz =
0.37 and βR = 0.23 for σR = 50.0 and σz = 24.0. The triangles are for
the thick disc in our Gaussian models.

depending upon whether the thick disc is considered as a
separate component or not. We find that a single compo-
nent model (no thick disc) in general gives higher values
for these quantities (column 2 of Table 5). For GCS we
find βR < βφ < βz . Our β values when the thick disc
is excluded are in better agreement with Aumer & Binney
(2009) (who do not consider a thick disc) than when it is in-
cluded. For the velocity dispersions, however, Aumer & Bin-
ney (2009) find (σthin

R , σthin
φ , σthin

z ) = (41.90, 28.82, 23.83),
which agree better with our results when the thick disc is in-
cluded.

The ratio of σz/σR and σφ/σR and the values of βR, βφ
and βz are useful for understanding the physical processes
responsible for heating the disc. Spitzer & Schwarzschild
(1953) first showed that scattering of stars by gas clouds can
cause an increase in velocity dispersion with age. Hänninen
& Flynn (2002) showed that with giant molecular clouds
one gets βR = 0.2 and βz = 0.25. Using 107M� mas-
sive halo objects (they refer to these as black holes) one gets
βR,z ∼ 0.5. The predicted ratio of σz/σR is between 0.40
and 0.67. The main difference in the two types of perturbers
is that the GMCs have a planar distribution while massive halo
objects are distributed in a sphere. However, in order to fit the
observations, they require a GMC population that is too nu-
merous or too massive (see also Jenkins 1992). Instead, it has
been shown that scattering by massive clouds leads to axial

ratios that evolve to a steady value of (σR : σz) = (1 : 0.62)
(Ida et al. 1993; Shiidsuka & Ida 1999; Sellwood 2008).

For RAVE both for Gaussian and Shu models we get
σthin
z /σthin

R 0.65 (column 6 of Table 5 and column 6 of Ta-
ble 6). The corresponding GCS value is 0.58 (column 3 of
Table 5 and column 2 of Table 6). Models without a thick
disc also give a similar value. These are values for a 10 Gyr
old population and we think they agree well with the above
predictions. If the different values of β are not same, then the
axial ratios of the velocity ellipsoid are also a function of age.
If βz > βR then this means σz/σR increases monotonically
with age as τβz−βR , meaning it is much lower for younger
stars. Aumer & Binney (2009) suggest that σz/σR = 0.62
as predicted by Sellwood (2008) is inconsistent with observa-
tions, as much lower values are seen for bluer stars, which are
supposed to be younger. We think that their value of 0.57 at 10
Gyr is in reasonable agreement with theoretical predictions,
the discrepancy if at all is related to the fact that βz 6= βR.
For the thick disc we find that the Gaussian model predicts
σthick
z /σthick

R = 0.68, while the Shu model predicts it be 0.80,
which is much higher.

The heating mechanisms discussed so far predict βR ∼ βz .
Another way to heat up the disc is by Lindblad resonances
of transient spiral arms that can scatter the stars. This pro-
cess only increases in-plane dispersions (Carlberg & Sell-
wood 1985; Sellwood 2013). The predicted values of βR are
between 0.2 for high-velocity stars and 0.5 for low-velocity
stars. Multiple spiral density waves (Minchev & Quillen
2006) or a combination of bar and spirals can also heat up
the disc (Minchev & Famaey 2010).

Recently, Minchev et al. (2013) investigated the age-
velocity dispersion relation for stars seen from simulations of
disc galaxies and find it to be in rough agreement with obser-
vations. We now compare our results with their findings. In
Figure 9, we plot their predictions for σR and σz which are for
stars in a Solar cylinder defined by 7 < R < 9 kpc. We over
plot our AVR given by Equation (8). We adopt βz = 0.37
and βR = 0.23, a value that fits both the RAVE and GCS
data well when using the Shu model (column 2 of Table 6). It
can be seen that for ages less than 7 Gyr, the adopted β val-
ues correctly reproduce the profiles seen in simulations. The
normalization was adjusted to fit the data in the simulations.
There is a slight hint that the σR flattens beyond 5 Gyr, but
it is also consistent with our power law prescription. While
the normalization constant σthin

z is roughly in agreement with
what we get, the normalization constant σthin

R is higher by
about 10 km s−1 in simulations. Since their results are for
7 < R < 9 kpc, and the density of stars and the velocity dis-
persion increases inwards, the dispersions in simulations are
expected to be slightly higher as compared to dispersions at
R = R0. In our model the thin disc extends till 10 Gyr (solid
line) and stars older than this belong to the thick disc with a
constant age of 11 Gyr (shown by red triangles). It is clear
from the figure that our simple model is not adequate for old
stars. The discrepancy of our model is more acute for the σz
profile which shows an abrupt increase for ages greater than
7 Gyr. It should be noted that, the power law model that we
use is adequate for handling a mild flattening of velocity dis-
persion with age, but is not suitable to handle a sharp rise.

6.5. The thick disc
First, we discuss our results for the Gaussian model. For

the thick disc, our values for (σthick
R , σthick

φ , σthick
z ) for GCS
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as given by the Gaussian model (column 3 of Table 5) are in
good agreement with results of Soubiran et al. (2003)(39 ±
4, 39±4, 63±6) but differ from Robin et al. (2003) regarding
σthick
φ . The RAVE σthick

R is lower than GCS by 7 km s−1

(column 6 of Table 5) but the other dispersions match up with
GCS.

In the Gaussian model the thick disc velocity dispersions
are much larger than that of the old thin disc. In the Shu mod-
els, we find that the thick disc dispersions are very similar
to the old thin disc (column 6 of Table 6). However, qthick

is much larger than qthin. The reason that the Gaussian and
Shu models differ in their estimates for the thick disc veloc-
ity dispersions is as follows. In the Shu model, the param-
eter σ2

R, which controls the velocity dispersion, is a func-
tion of age τ and guiding radius Rg and is not equal to the
velocity dispersion v2

R(τ,R). For a positive q, v2
R(τ,R) =∫

σ2
R(τ,Rg)P (Rg|R, τ)dRg > σ2

R(τ,Rg = R). At a given
radiusR in general for warm discs there are a significant num-
ber of stars with Rg < R. Increasing q not only makes stars
at small radius hotter but also makes them more likely to be
found at higher radius. So increasing q increases v2

R(τ,R).
For the set of parameters given in column 6 of Table 6, we
find that at R = R�√

〈v2
z,thin〉(τ) = 26.8

(
τ + 0.1

10.1 Gyr

)0.41

km s−1 (29)

√
〈v2
R,thin〉(τ) = 41.4

(
τ + 0.1

10.1 Gyr

)0.22

km s−1 (30)√
〈v2
z,thick〉= 40.0 km s−1, (31)√

〈v2
R,thick〉= 49.4 km s−1, (32)

with 0 < τ < 10 Gyr. So the total thick disc v2
z,R in the solar

neighborhood is still much larger than that of the thin-disc.
In the Shu model the thick disc dispersions atRg = R� are

similar to that of the old thin disc. However, qthick is much
larger than qthin, i.e., the radial scale length of dispersion pro-
file is smaller for the thick disc. While this can be an argument
for a distinct thick disc, a smooth increase of q with age can-
not be ruled out at this stage. Additionally, our prior on age
and distance distribution assumes a distinct thick disc, e.g., in
Figure 3 it can be seen that the distance distribution changes
suddenly at 10 Gyr. This could be responsible for qthick being
larger than qthin. An alternative interpretation is as follows.
In our kinematic analysis we use the same Rd = 2.5 (radial
density scale length) for both thin and thick disc. So, we are
effectively measuring the quantity q/Rd. This suggests that
the thick disc radial scale length is smaller than that of thin
disc. This agrees with the findings of Bovy et al. (2012d) who
suggest a decrease of scale length with age.

6.6. The radial gradient of velocity dispersions
To date, there has been little discussion about the q pa-

rameter in the literature. This ‘constant’ controls the ra-
dial dependence of velocity dispersion which is modelled as
exp(−qR/Rd). This choice of the radial dependence is moti-
vated by the desire to produce discs in which the scale height
is independent of radius. For example, under the epicyclic
approximation, if σz/σR is assumed to be constant, then the
scale height is independent of radius for q = 0.5 (van der

Kruit & Searle 1982; van der Kruit 1988; van der Kruit &
Freeman 2011). Lewis & Freeman (1989) using 600 old disc
K giants spanning 1 to 17 kpc in galactocentric radius estimate
q to be 0.29 for radial velocity and 0.38 for azimuthal velocity.
Ojha et al. (1996) using a survey of UBVR photometry and
proper motions in different directions of the Galaxy estimated
q = 0.225 ± 0.04. Bovy et al. (2012c) using SDSS/SEGUE
data find q = 0.35 for vertical velocity dispersions. Bovy
et al. (2012a) using APOGEE data find q to be between -0.07
to 0.01, for the radial and azimuthal motion. In our modelling,
the radial gradient is assumed to be same for all the three com-
ponents. Note, most authors quote Rσ = Rd/q instead of q.
Since we use Rd = 2.5 in our analysis so we use this value to
convert Rσ reported by other authors to q.

Our results indicate that for GCS, q is positive for both
Gaussian and Shu models. For RAVE, the Gaussian model
predicts q to be negative, whereas the Shu model predicts q ∼
0.23. We also applied the Gaussian model used by Bovy et al.
(2012a) to the RAVE data and find qthin = −0.07 (see col-
umn 1 of Table 9) similar to their result (−0.075 < q < 0.01).
Since the Shu model also fits the data better, we think that a
negative q peculiar to the Gaussian model is spurious. The
reason the Gaussian model does not fit the data well is be-
cause the vφ distribution is not symmetric for warm discs, and
the Shu DF correctly handles the asymmetry. Moreover, the
qthin estimate from the Shu model agrees for both GCS and
RAVE, lending further support to the idea that the problem is
related to the use of the Gaussian model.

A positive q agrees with findings of Lewis & Freeman
(1989). It should be noted that in the analysis done by us
and Bovy et al. (2012a), the q values are strongly dominated
by how we model the asymmetric drift and hence are model
dependent. On the other hand, the values reported by Lewis &
Freeman (1989) are a direct measure of the radial gradient of
velocity dispersion. The q value for the thick disc is in general
higher than for the thin disc in RAVE.

6.7. Comparison with Bovy’s kinematic model
We carried out a more detailed analysis of the kinematic

model used by Bovy et al. (2012a). We stress that there are
significant differences between the analysis done by us and
by Bovy et al. (2012a), both related to data and methodology,
which should be kept in mind when comparing the results.
Their sample is close to the plane |b| < 1.5◦ and lies in the
range 30◦ < ` < 330◦. Being close to the plane they cannot
measure the vertical motion, but the advantage is they do not
have to worry about the dependence of asymmetric drift with
vertical height z. The ` and b range being different means
that their data and ours probe spatially different regions of
the Milky Way. If the disc is axissymmetric, we hope to get
similar answers, but not otherwise.

Their main analysis is using a single population model and
without any age-velocity dispersion relation. We approximate
this by assuming βR ∼ βφ ∼ βz ∼ 0, and the results are
shown in column 1 of Table 9. They use a Gaussian model,
but with a modified formula for the asymmetric drift. To
model their asymmetric drift formula, we assume the param-
eter X used by them in Equation 5 to be 0.85 (we rename X
as kad). As mentioned earlier, using RAVE data and a Gaus-
sian model we find qthin = −0.07 in agreement with them, a
consequence of the Gaussian model assumption. Our value
of vc is also in agreement but our σR is much larger than
their value 31.4 km s−1. Their sample could be dominated
by cold stars because of its proximity to the plane. They find
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TABLE 9
CONSTRAINTS ON MODEL PARAMETERS WITH BOVY ET AL. (2012A) GAUSSIAN MODEL. SEE TABLE 5 FOR FURTHER DESCRIPTION.

Model RAVE BOVY RAVE BOVY RAVE BOVY RAVE BOVY
U� 10.16+0.15

−0.15 11.78+0.15
−0.15 11.59+0.15

−0.14 10.96+0.14
−0.14

V� 13.36+0.25
−0.22 6.2+0.18

−0.18 8.77+0.28
−0.28 0.032+0.052

−0.024

W� 7.364+0.098
−0.098 7.688+0.09

−0.09 7.694+0.097
−0.089 7.622+0.094

−0.087

σthin
φ 26.455+0.095

−0.096 33.11+0.29
−0.27 25.83+0.36

−0.38 33.84+0.28
−0.27

σthin
z 22.99+0.12

−0.12 31.55+0.3
−0.3 23.29+0.6

−0.62 33.6+0.29
−0.29

σthin
R 41.39+0.17

−0.16 57.58+0.31
−0.31 41.55+0.57

−0.62 51.44+0.29
−0.27

σthick
φ 37.45+0.5

−0.56

σthick
z 38.84+0.47

−0.52

σthick
R 65.69+0.55

−0.64

βR 0.01 0.4584+0.0071
−0.0066 0.193+0.013

−0.012 0.3568+0.0045
−0.0049

βz 0.01 0.514+0.016
−0.013 0.263+0.025

−0.027 0.588+0.013
−0.016

βφ 0.01 0.3747+0.0093
−0.009 0.166+0.013

−0.013 0.4151+0.0081
−0.0093

qthin −0.0725+0.0075
−0.0088 0.1232+0.0064

−0.006 0.029+0.013
−0.013 0.1045+0.0069

−0.0077

qthick 0.1726+0.0095
−0.0097

v0 210.8+1.5
−1.5 205.5+1.5

−1.5 213.9+1.6
−1.6 239.1+1.7

−1.9

kad 0.85 0.85 0.85 1.968+0.022
−0.021

σφ/σR = 0.83 which is higher by about 0.1 than what we get
for either RAVE or GCS using any type of model.

They also explored multiple populations with a prior on age
as given by an exponentially declining star formation history.
However, they only quote vc, R0 and σR for it. For multi-
ple populations, their prior on age for the selected stars ig-
nores the fact that scale height increases with age. This will
probably have little impact on vc, but their σR values can-
not be compared with ours. Also, they assume a priori that
βR = βφ = 0.38, but we have shown that σR depends upon
the choice of βR. When we leave β free, we see they differ
from the value of 0.38 (column 2 of Table 9). If the thick disc
is included, the β values are significantly reduced (column 3).
In agreement with Bovy et al. (2012a) we find that the value
of vc is not affected much by the choice of age-velocity dis-
persion relation. Including the thick disc leads to an increase
in vc by only 8 km s−1. Interestingly, when kad is left free we
find it favors very high values (column 4). This suggests that
we are underestimating the asymmetric drift, most probably
due to our neglect of the vertical dependence.

6.8. Systematics
Although we get quite precise values for most model pa-

rameters, there are additional systematic uncertainties that we
have neglected. We performed some additional MCMC runs
to investigate these systematics and these results are summa-
rized in Table 7. The first set of systematics is due to two pa-
rameters that were kept fixed in our analysis, while the second
set is related to our choice of priors on the age and distance
distribution of stars.

The distance of the sun from the Galactic center R� and
the radial gradient of circular velocity αR were kept fixed at
8.0 kpc and zero for most of our analysis. This is because
these are strongly correlated with v0. Using just the angular
position and radial velocity of RAVE stars, it is not possible to
constrain them. The effect of changingR0 from 7.5 to 8.5 kpc
can be seen in column 3 and 4 of Table 7, while the effect of
changing αR from zero to 0.65 km s−1 kpc−1 can be gauged
by comparing columns 1 and 2 in the same table. Using these
tables, if needed one can obtain values for any given R0 and
αR by linearly interpolating between the respective columns.
Increasing αR increases v0, while the other parameters are

relatively unaffected. Increasing R� increases αz as well as
v0. Again, there is little change in other parameters. The
Ω� was found to decrease from 30.8 km s−1 kpc−1 at R� =
7.5 kpc to 29.4 km s−1 kpc−1 at R� = 8.5 kpc. The above
relationship tentatively suggests that at R� ∼ 7.92 one can
match the Sgr A* proper motion. We also checked the effect
of setting αz = 0.0374, the value we expect from analytical
models. We found that this makes v0 ∼ 229.2 km s−1 and
V� ∼ 8.0, which is not significantly far from the value we get
when αz is free.

We now discuss systematics related to our choice of pri-
ors. Our main prior is that the age and distance distribution
of stars along a particular line of sight is in accordance with
Besançon model of the Galaxy. Additionally, the distance dis-
tribution for a given IDENIS magnitude of a star depends upon
the isochrones that are used in the model. As a crude way to
gauge the sensitivity to our priors in age, we run a model with
βz = βR = 0.01 (column 7) which makes the kinematics of
the thin disc independent of age. As expected, the thin and
thick disc parameters change. Other than this, the αz and v0

are found to increase by 12% and 2% respectively.
Next, we test the effect of changing the distance prior. For

this we alternately increase and decrease our prior distance
distribution by multiplying the distances by a factor of 1.1
and 0.9 respectively. The V�, v0 and qthin show significant
changes. It should be noted that this is only an approximate
way to check the sensitivity of our results on the priors. In re-
ality, if magnitudes are systematically wrong then the spatial
density model that we use will not match the number count of
stars obtained from photometric surveys. So, the mass den-
sity laws of the model will have to be modified as well. The
proper way to do this is to do a dynamical modelling in which
the kinematics and the spatial distribution of stars are fitted
jointly to the observational data.

Finally, systematics due to inaccuracy of the model
to self-consistently describe the system remains a worry.
Flattened axisymmetric galactic potential admit three in-
tegral of motions, so ideally one should construct distribu-
tion functions that are functions of these three integrals of
motion. If the potential is separable in R and z such that
Φ(R, z) = Φ(R) + Φ(z), then the vertical and planar mo-
tion are independent of each other. The Shu DF is a planar
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distribution function that takes two integrals of motion as
ER and Lz . The vertical energy in such cases can be used
as the third integral of motion. In reality the ∂Φ/∂R has
a z dependence and in general the potential is not separa-
ble in R and z as discussed above. In such cases a better
approach would be to use distribution functions that are
functions of action integrals (Binney 2010, 2012b). How-
ever, converting phase space coordinates to (x,v) is not
easy and methods to do this are being developed (Binney
2012a).

Another problem with our current model is that the
scale height only depends upon age. A mono age popu-
lation in reality is a superposition of multiple isothermal
populations, e.g., isothermal populations characterized by
their guiding radius Rg . Populations with smaller Rg are
in general hotter and will have larger scale height at a
given radius R. This means that even for a mono age pop-
ulation the asymmetric drift has a z dependence which
was ignored in our present analysis. Allowing the circu-
lar velocity to fall with z was an attempt to also take this
into account. Use of an action based model will also rectify
this problem. An approximate formula to take this into ac-
count has been given by Schönrich & Binney (2012). Their
treatment in general extends the Shu DF by making use of
the adiabatic approximation, i.e., conservation of vertical
action, and allows modelling the kinematics as a function
of distance from the plane. Recently, it has been shown
by Binney (2012a); Binney & McMillan (2011) that adia-
batic approximation is accurate only close to the midplane
and that much better results are obtained by the use of the
Stackel approximation. In future, we need to compare our
findings with action based models.

7. SUMMARY AND CONCLUSIONS

In this paper, we have constrained the kinematic parame-
ters of the Milky Way disc using stars from the RAVE and
the GCS surveys. To constrain kinematic parameters, we
use analytic models based on the Gaussian and Shu distri-
bution functions. We investigated the Solar peculiar mo-
tion (U�, V�,W�), the circular velocity at the Sun v0 and
its vertical profile αz , the age velocity dispersion relations
(βR,φ,z , σthin

R,φ,z and σthick
R,φ,z), and the radial gradient of dis-

persions (qthin and qthick). We explored the full posterior dis-
tribution of parameters using the Markov Chain Monte Carlo
technique. The main assumption we make is that we assume
a SFR, IMF and density laws that describe the spatial dis-
tribution of stars in accordance with the Besançon model of
Robin et al. (2003), but with slight modifications as described
in Sharma et al. (2011). Isochrones from the Padova database
are used to compute photometric magnitude of the model stars
(Marigo et al. 2008; Bertelli et al. 1994). This model pro-
vides a good fit to the photometric star counts of Milky Way.
For GCS data, which has full phase space information for the
stars, we compute the likelihood in (x,v) phase space. For
RAVE data, we do not have accurate distances and proper
motions can have systematics, hence we measure the likeli-
hood only in (`, b, vlos) space. In other words, we limit our
analysis to quantities that are accurately and unambiguously
known. Our best fit parameters for both Gaussian and Shu
models using the RAVE data are summarized in column 6 of
Table 6.

One could in principle combine both the surveys and give
joint constraints. However, for some parameters like solar
motion it is not obvious if two surveys that probe different

volumes of the Galaxy should give the same answer, e.g., if
the local standard of rest is moving or there are kinematic
substructures like in GCS sample. In such cases one cannot
do a joint constraint. In general, if there are systematic dif-
ferences between the two surveys, then the interpretation of
the results coming from joint constraints becomes difficult.
Hence, in this paper, to begin with we analyze the surveys
separately and make an effort to understand the systematics.
Having done that, in an attempt to improve the accuracy we
follow the approach of judiciously fixing some parameters in
one survey to that from the other, where they are found to
be better constrained. We do this only for those parameters
which we expect to be same in both surveys.

We find the Gaussian model to be unsuitable for estimating
disc parameters like qthin and V� as they are strongly degen-
erate. The Gaussian model gives different qthin for RAVE and
GCS. For RAVE it predicts a negative qthin, i.e., a positive ra-
dial gradient for σR. This is not expected if the disc height
and the ratio σz/σR do not vary with radius. A negative qthin

also disagrees with the findings of Lewis & Freeman (1989).
The Shu model has three fewer parameters than the Gaussian
model and this helps it to break the degeneracy between qthin

and V�. It gives positive and consistent values for qthin for
both RAVE and GCS. The Shu models also fits the RAVE
data better than the Gaussian model, especially with regard to
the azimuthal component.

The RAVE data allows us to constrain the Solar peculiar
motion and the local circular velocity quite precisely. Our U�
and W� are in good agreement with the results of Schönrich
et al. (2010), but our V� is lower by 5 km s−1. The RAVE
U� and W� are within 2-σ range of GCS values, but V�
is lower by 2 km s−1. Using R0 = 8.0 kpc and assuming
∂vcirc/∂R = 0 we get v0 = 232± 2 km s−1. Combining the
estimate of v0 and V�, we find the Solar angular velocity with
respect to the Galactic Center to be in good agreement with
the measured Sgr A* proper motion. We find that for any ex-
tended sample in the vertical direction, a proper treatment of
vertical dependence of the effective circular velocity is needed
to measure v0. The v0 and V� are sensitive to the priors on
age and distance distribution of stars. So systematic errors of
the order of the uncertainty in the priors is expected. Also,
systematics due to inaccurate handling of the third inte-
gral of motion need to be investigated with better models,
e.g., models based on action integrals.

When using the Shu model, except for V� and thick disc
parameters, all parameters show similar values for RAVE and
GCS. Since there are very few thick disc stars in GCS, we
deem the RAVE thick disc parameters to be more reliable.
Also, the uncertainty on qthin and qthick is substantially less
for RAVE than for GCS. The only parameter that is con-
strained better by GCS than RAVE is βz and this is partly
due to the fact that we only use radial velocities in RAVE. In
an attempt to build a concordance model, and to enable bet-
ter comparison between the two data sets, we fix βz in RAVE
to GCS values and then fix qthin and qthick in GCS to RAVE
values. Doing so we find that RAVE results are within 3σ of
GCS results. The most significant difference between the two
is the value of V� which is lower for RAVE by about 2 km
s−1. The presence of prominent kinematic substructures in
GCS could be responsible for this.

We find that the age-velocity dispersion relations in general
obey βR < βφ < βz . Unlike Aumer & Binney (2009), βφ is
closer to βR than βz . This suggests that the heating mecha-
nisms for the radial and the azimuthal velocities as expected
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from physics are similar but different from that of vertical mo-
tion. The β values vary depending if the thick disc is included
or not. If the thick disc is not included, then the β values
are higher compared to when it is included. The axial ratio
σz/σR of the thin disc velocity ellipsoid for the 10 Gyr pop-
ulation is consistent with those predicted for scattering from
clouds by Sellwood (2008). The values of βR and βz that we
find agree well with age-velocity profiles seen in simulations
of disc galaxies by Minchev et al. (2013) at least till 7 Gyr. For
stars older than 7 Gyr, we think the current model used by us,
a power law AVR for thin disc and a constant age thick disc,
is too restrictive to model the profile found in simulations. In
future, we think analytical models motivated by properties of
discs seen in simulations should be useful for constraining the
kinematic parameters of the Milky Way. Also it would be in-
teresting to explore dynamical models that are self-consistent
rather than pure kinematic models as studied here. The ques-
tion of how to model the thick disc is also something that
needs further attention.

The thick disc velocity dispersions for Rg = R� in the Shu
model were found to be very similar to that of the old thin
disc. However, the q parameter controlling the radial disper-
sion profile for the thick disc was found to be much larger than
that of the thin disc. This could mean that for thick disc, the
radial scale length of the velocity dispersion profile is smaller
or the radial scale length of the density profile is smaller, or
both. This agrees with the findings of Bovy et al. (2012d) who
suggest a decrease of radial density scale length with age. In
this regard, the role of our adopted priors on age and distance
distribution of stars needs to be investigated further.

Finally, in most models, the properties of the disc are as-
sumed to be a function of age. However, age is a quantity
that is most difficult to measure. Stellar astroseismology with
missions like CoRoT and KEPLER provides an opportunity to

measure ages with more accuracy than before (Chaplin et al.
2010, 2011; Appourchaux et al. 2008), but there is still a long
way to go before this can be done for a large number of stars.
Alternatively, the chemical abundance, e.g., alpha abundance,
provides a fair proxy for age at a given metallicity. Hence,
studying the relationship of kinematic properties with abun-
dance would be crucial. It was shown by Bovy et al. (2012d)
that decomposing a disc based on geometry versus abundance
can give different results. In the same way, age and abundance
decomposition can also give different results. In future, more
effort will be required to determine as to how accurate are al-
pha abundances in tracking the age and how to incorporate
them in modelling.
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FIG. 10.— Marginalized posterior distribution of model parameters. The numbers are the linear Pearson correlation coefficient. Shown is the case of Gaussian
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Wadsley, J. 2011, ApJ, 737, 8, 1009.5997
Marigo, P., Girardi, L., Bressan, A., Groenewegen, M. A. T., Silva, L., &

Granato, G. L. 2008, A&A, 482, 883, 0711.4922
McMillan, P. J., & Binney, J. 2012, MNRAS, 419, 2251, 1108.1749
McMillan, P. J., & Binney, J. J. 2008, MNRAS, 390, 429, 0806.0319
——. 2010, MNRAS, 402, 934, 0907.4685
Minchev, I., Chiappini, C., & Martig, M. 2013, A&A, 558, A9, 1208.1506
Minchev, I., & Famaey, B. 2010, ApJ, 722, 112, 0911.1794
Minchev, I., & Quillen, A. C. 2006, MNRAS, 368, 623,

arXiv:astro-ph/0511037
Nordström, B. et al. 2004, A&A, 418, 989, arXiv:astro-ph/0405198
Ojha, D. K., Bienayme, O., Robin, A. C., Creze, M., & Mohan, V. 1996,

A&A, 311, 456, arXiv:astro-ph/9511049
Pasetto, S. et al. 2012a, A&A, 547, A70, 1209.0456



24

USun

0
1000
2000
3000
4000
5000 11.45

-0.1
+0.1

VSun

  

 

 

-0.08

7.997
-0.3
+0.3

WSun

  

 

 

0.13

7.688
-0.09
+0.09

σφ
thin

  

 

 

0.05

25.56
-0.4
+0.3

σz
thin

  

 

 

0.00

25.69
-0.2
+0.2

σR
thin

  

 

 

0.01

39.26
-0.7
+0.7

σφ
thick

  

 

 

-0.04

37.16
-0.5
+0.5

σz
thick

  

 

 

-0.10

40.4
-0.5
+0.5

σR
thick

  

 

 

0.15

58.43
-0.8
+0.9

βR

  

 

 

0.01

0.1345
-0.01
+0.01

βφ

  

 

 

0.02

0.1697
-0.01
+0.01

qthin

  

 

 

0.07

0.04703
-0.01
+0.01

qthick

  

 

 

-0.12

0.2266
-0.009
+0.009

v0

  

 

 

-0.52

229.2
-2
+2

αz

  

 

 

-0.09

0.0738
-0.002
+0.002

7.0
7.5
8.0
8.5
9.0

V
S

u
n

7.0
7.5
8.0
8.5
9.0

V
S

u
n

 
 
 
 
 
 

  

 

 

-0.02

  

 

 

-0.05

  

 

 

-0.00

  

 

 

-0.14

  

 

 

0.27

  

 

 

0.14

  

 

 

-0.29

  

 

 

-0.21

  

 

 

-0.12

  

 

 

-0.85

  

 

 

0.21

  

 

 

-0.07

  

 

 

-0.65

7.4
7.5
7.6
7.7
7.8
7.9

W
S

u
n

7.4
7.5
7.6
7.7
7.8
7.9

W
S

u
n

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

  

 

 

-0.01

  

 

 

0.04

  

 

 

-0.05

  

 

 

-0.02

  

 

 

0.02

  

 

 

-0.03

  

 

 

-0.07

  

 

 

0.01

  

 

 

-0.02

  

 

 

0.07

  

 

 

-0.00

  

 

 

0.03

24.5
25.0
25.5
26.0
26.5

σ
φth

in

24.5
25.0
25.5
26.0
26.5

σ
φth

in

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

  
 
 
 
 
 

  

 

 

-0.05

  

 

 

-0.11

  

 

 

-0.25

  

 

 

-0.07

  

 

 

0.03

  

 

 

-0.08

  

 

 

0.93

  

 

 

0.06

  

 

 

-0.04

  

 

 

-0.03

  

 

 

0.05

25.0
25.2
25.4
25.6
25.8
26.0
26.2

σ
zth

in

25.0
25.2
25.4
25.6
25.8
26.0
26.2

σ
zth

in

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 
 
 
 
 

  

 

 

0.06

  

 

 

-0.02

  

 

 

-0.16

  

 

 

0.03

  

 

 

0.18

  

 

 

0.02

  

 

 

0.01

  

 

 

0.00

  

 

 

0.02

  

 

 

0.01

37
38
39
40
41

σ
Rth

in

37
38
39
40
41

σ
Rth

in

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

  

 

 

0.06

  

 

 

-0.08

  

 

 

-0.20

  

 

 

0.95

  

 

 

-0.06

  

 

 

0.11

  

 

 

0.10

  

 

 

-0.01

  

 

 

0.07

36

37

38
39

σ
φth

ic
k

36

37

38
39

σ
φth

ic
k

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 
 
 
 
 
 

  

 

 

-0.15

  

 

 

-0.29

  

 

 

0.04

  

 

 

-0.23

  

 

 

-0.12

  

 

 

0.03

  

 

 

-0.15

  

 

 

-0.26

39

40

41

42

σ
zth

ic
k

39

40

41

42

σ
zth

ic
k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

  

 

 

-0.32

  

 

 

-0.12

  

 

 

-0.10

  

 

 

-0.12

  

 

 

0.16

  

 

 

0.21

  

 

 

-0.03

56
57
58
59
60
61

σ
Rth

ic
k

56
57
58
59
60
61

σ
Rth

ic
k

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

  

 

 

-0.13

  

 

 

0.06

  

 

 

0.31

  

 

 

-0.69

  

 

 

-0.17

  

 

 

0.01

0.10
0.12
0.14
0.16
0.18

β
R

0.10
0.12
0.14
0.16
0.18

β
R

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

  
 
 
 
 
 

  

 

 

-0.05

  

 

 

0.23

  

 

 

0.05

  

 

 

0.02

  

 

 

0.11

0.14
0.16
0.18
0.20

β
φ

0.14
0.16
0.18
0.20

β
φ

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

  

 

 

0.10

  

 

 

-0.09

  

 

 

0.00

  

 

 

0.12

0.02
0.04
0.06
0.08

q
th

in

0.02
0.04
0.06
0.08

q
th

in

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

  

 

 

-0.21

  

 

 

0.08

  

 

 

0.32

0.20
0.21
0.22
0.23
0.24
0.25
0.26

q
th

ic
k

0.20
0.21
0.22
0.23
0.24
0.25
0.26

q
th

ic
k

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

  

 

 

0.29

  

 

 

-0.21

224
226
228
230
232
234

v
0

224
226
228
230
232
234

v
0

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 

  

 

 

0.26

USun

0.070

0.075

0.080

α
z

USun

0.070

0.075

0.080

α
z

1
1

1
1

.2

1
1

.4

1
1

.6

1
1

.8

VSun

 

 

 

VSun

 

 

 

7 7
.5

8 8
.5

9

WSun

 

 

 

WSun

 

 

 

7
.4

7
.5

7
.6

7
.7

7
.8

7
.9

σφ
thin

 

 

 

σφ
thin

 

 

 

2
4

.5

2
5

2
5

.5

2
6

2
6

.5

σz
thin

 

 

 

σz
thin

 

 

 

2
5

2
5

.2

2
5

.4

2
5

.6

2
5

.8

2
6

2
6

.2

σR
thin

 

 

 

σR
thin

 

 

 

3
7

3
8

3
9

4
0

4
1

σφ
thick

 

 

 

σφ
thick

 

 

 

3
6

3
7

3
8

3
9

σz
thick

 

 

 

σz
thick

 

 

 

3
9

4
0

4
1

4
2

σR
thick

 

 

 

σR
thick

 

 

 

5
6

5
7

5
8

5
9

6
0

6
1

βR

 

 

 

βR

 

 

 

0
.1

0
.1

2

0
.1

4

0
.1

6

0
.1

8

βφ

 

 

 

βφ

 

 

 

0
.1

4

0
.1

6

0
.1

8

0
.2

qthin

 

 

 

qthin

 

 

 

0
.0

2

0
.0

4

0
.0

6

0
.0

8

qthick

 

 

 

qthick

 

 

 

0
.2

0
.2

1

0
.2

2

0
.2

3

0
.2

4

0
.2

5

0
.2

6

v0

 

 

 

v0

 

 

 

2
2

4

2
2

6

2
2

8

2
3

0

2
3

2

2
3

4

αz

  
 
 
 
 
 

-2 -1.5 -1 -0.5 0
log(ρ/ρmax)

FIG. 12.— Marginalized posterior distribution of model parameters. The numbers are the linear Pearson correlation coefficient. Shown is the case of Gaussian
model for RAVE data (column 5 of Table 5). Strong dependency can be seen between β and σthin values. Additionally, (qthin, V�) and (qthick, σ
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R ) also

show dependency. Finally, the vc is anti-correlated to U� and αz to V�.
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FIG. 13.— Marginalized posterior distribution of model parameters. The numbers are the linear Pearson correlation coefficient. Shown is the case of Shu model
for RAVE data (column 6 of Table 6). Strong dependency can be seen between β and σthin values. Additionally, (qthin, V�), (qthin, σ

thin
R ), (qthin, βR) and

(qthick, σ
thick
R ) also show dependency. Unlike GCS a dependency of (σthin

R , σthick
R ) and (βz , βR) can be seen. Finally, the vc is anti-correlated to U� and αz

to V�.
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