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VICTER*  Model 
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* Volterra Integral Code for Transport in Electrostatic Reactors 
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Basic Assumptions in VICTER 

• Background D2 gas 
 

• Spherical symmetry – ignore stalk, defocusing, and jets 
 

• Prescribed electrostatic potential profile 
 Child-Langmuir or vacuum potential in intergrid region 
 Flat in the cathode region 

 

• Deuterium (D+, D2
+, and D3

+ ) ions enter from the source region 
 

• D+, D2
+ ions  created in the intergrid and cathode regions by impact 

ionization, charge exchange, and dissociation of fast ions colliding 
with the background D2 gas 
 

• D- ions created by charge exchange processes  
 

• Interactions occur without momentum transfer between nuclei; 
daughter products travel at the same speed as parent 
 

• Collisionless ion motion between interactions 
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Atomic and Molecular Processes Included 

D+ + D2 → D  + D2
+    charge exchange of D+ 

D+ + D2 → D+  + …   stationary D+ production 

D+ + D2 → D2
+  + …   stationary D2

+ production 

D2
+ + D2 → various products  destruction of  D2

+ 

D2
+ + D2 → D+  + …    fast D+ production 

D2
+ + D2 → D+  + …    stationary D+ production 

D2
+ + D2 → D2

  + D2
+    charge exchange of D2

+ 

D3
+ + D2 → various products  destruction of  D3

+ 

D3
+ + D2 → D+  + …   fast D+ production 

D3
+ + D2 → D2

+  + …   fast D2
+ production 

D3
+ + D2 → D+  + …   stationary D+ production 

D3
+ + D2 → D2

+  + …   stationary D2
+ production 

 

Some of these processes are sums over various reaction channels. 
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Two Coupled Volterra Integral Equations 

Determine the Source Functions, Si(r) 

        1,2     ,,
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Si(r) = number of ions born per unit volume per sec at radius  r. 

Ai(r) = slow ion source due to ions from source region               

Sum over all generations of daughter ions and all ion passes 

for D+ (i = 1) and D2
+ (i = 2) 
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Kernel relates the Source at one Radius 

 to the Source at another Radius 
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Slow Source contribution: 
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The Ion Energy Spectra are Obtained 

 from the Source Functions 
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Inward traveling ions: 

Outward traveling ions: 

 

where 

and  s denotes the species (s = 1 (D+), s = 2 (D2
+), and s = 3 (D3

+)) 

 



GAE & JFS 2011 Fusion Technology Institute, University of Wisconsin 8 

Example Energy Spectra of  

D+ Ions Traveling Inward 

100 kV, 100 mA, P=2 mTorr, rc=0.1 m, ra=0.25 m, 

source D+:D2
+:D3

+=0.06:0.23:0.71 

D+ from 

source region 

Surviving D+ 

from source 

region  

Continuum 

in energy of 

D+ created 

at rc < r < ra 

Continuum-energy 

D+ ions 

Note: This figure’s z-axis is only 

to f = 0.005 

(The tops of the delta functions 

are cut off.) 

D+ from full-energy 

D2
+ and D3

+ 

passing through 

cathode region 
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The Ions Produce Fast Atoms and Molecules by 

Charge Exchange and Dissociative Processes 

     
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Define a fast neutral atom source function: 

 

Fast Atom and Molecule Energy Spectra is 

gotten from solving: 
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Formation of Fast Neutral Atoms 

 and Molecules Included 

D+ + D2 → fast D  + … 

D2
+ + D2 → fast D  + … 

D2
+ + D2 → fast D2  + … 

D3
+ + D2 → fast D  + … 

D3
+ + D2 → fast D2  + … 

 

 



GAE & JFS 2011 Fusion Technology Institute, University of Wisconsin 11 

Typical D Atom Energy Spectra 
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Dave Boris and David Donovan Developed a 

Low-Noise, Charged-Particle Detection System 

1 MeV 

tritons 

70 kV, 30 mA, 1.25 mTorr 3 MeV 

protons 

•Examining either side of the double-

peaked spectra can yield center-of-mass 

energy of the deuterium reactants 

IEC 

Isometric 

FIDO: Fusion Ion 

DOppler Shift 

Diagnostic  
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FIDO diagnostic 
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Using VICTER to Simulate FIDO 

Integrating over the detection cone and the solid angle 

for protons to reach the detector gives 
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Sfido(Ep) = number of protons detected at energy Ep per unit 

energy per unit time. 
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Simulating the Proton Energy Spectra 
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“Line – Averaged” Deuteron Energy Spectra 

To infer the “line – averaged” F(E) from the experimental 

proton energy spectra, have to assume parallel or antiparallel 

fusion events 

 
CM

p

CM

p

lab VVV 

70 kV, 30 mA,1.25 mTorr 

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

10 20 30 40 50 60 70 80

F
(E

) 
(a

r
b

it
r
a
r
y

 u
n

it
s)

 

Energy in lab frame (keV) 

Exp.

Code



GAE & JFS 2011 Fusion Technology Institute, University of Wisconsin 18 

Time Of Flight (TOF) Diagnostic is an 

Advancement on the FIDO concept 

• Initiated by Boris and developed by Donovan 

• 2 identical FIDO setups on opposite sides of HOMER 

• Direct line of sight created through both arms and center of chamber 

18 
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Donovan’s Time of Flight Diagnostic - 

Comparison of Neutron Production Profile 
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Negative Ions are a Recent Addition to VICTER 

 

Negative Ion Processes included: 

 D+ + D2 → D- + 2D+ 

 D2
+ + D2 → D- + D+ + D2

+ 

 D3
+ + D2 → D-  + 2D2

+ 

 D + D2 → D- + D2
+ 

 D + D2 → D- + 2D + + e- 

 D2 + D2 → D- + D+ + D2 

 

 D- + D2 → D + D2 + e-  (stripping ) 
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Modeling Negative Ions 

   , ,, ,in out in out

N g species

species

S r E dE n F r T dT   
Energy spectra of positive 

ions and neutrals 

Cross section for producing 

negative ions 

     , , , , ,in out

N NF r E S r E p r r E dr   
Survival probability 

Negative ion source function 

 

The negative ion energy spectra is then: 

 

total energy of a negative ion 
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Survival Probability 

Probability of a negative ion born at rʹ with total energy E 

and reaching r is 

 

 

The integral is along the path of the negative ion from the birth 

point rʹ to r. There are three kinds of paths: 

 1. Purely outward motion 

 2. Inward, pass through the center to become outward 

 3. Inward, reflect at the turning point to become outward  

 

See Alderson’s talk for details and experimental comparison 

 

   , , exp g stripp r r E n r dr    
 



GAE & JFS 2011 Fusion Technology Institute, University of Wisconsin 23 

Summary and Conclusions 

• The VICTER code can calculate the detailed energy 

spectra of the various ion and neutral particle species as 

a function of radius. 

• Negative ions have added to the code. 

• Comparison with experimental results: 

 Numerical energy spectra are in approximate agreement with 

experimental results, except 

 Experimental energy spectra does not show the predicted 

discrete spectra.  

 Calculated neutron production profile is more peaked than 

seen experimentally. 

 



Thank you for 

your attention. 
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Theoretical Neutron Production Rate is in Reasonable 

Agreement with Experimental Results 

70 kV, 30 mA,1.25 mTorr, rc=0.1 m, ra=0.2 m 

source D+:D2
+:D3

+=0.06:0.23:0.71 

• NB: need to include cold 

ion recombination with 

cold electrons to make 

agreement “reasonable” 
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Proton Energy in CM and Lab Frames 
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Molecular Ions are Attenuated by Dissociation 

and Charge Exchange with D2 Gas 
T
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Dissociation products formed with finite kinetic energy  
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turning points 

Ions created with zero kinetic energy 


