Sgr A*: from 10⁰ to 10⁻¹⁸ m in 3000 seconds

Mark Wardle

Department of Physics Macquarie University

Outline

The Galactic centre and Sgr A* Mass determination Accretion Spectrum: radio to x-ray TeV gamma rays Summary

• Sgr A* is almost certainly a black hole with mass $\approx 4 \times 10^6 M_\odot$
- Sgr A* probably accretes stellar wind material, with $\dot{M} \sim 10^{-4}M_\odotyr^{-1}$
Sgr A* may be a source of TeV gamma rays
 Flaring from submm to x-rays provides useful constraints on mode for the accretion flow and emission mechanisms