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ABSTRACT
We present a method to numerically estimate the densities of a discretely sampled data based

on a binary space partitioning tree. We start with a root node containing all the particles and

then recursively divide each node into two nodes each containing roughly equal number of

particles, until each of the nodes contains only one particle. The volume of such a leaf node

provides an estimate of the local density and its shape provides an estimate of the variance. We

implement an entropy-based node splitting criterion that results in a significant improvement

in the estimation of densities compared to earlier work. The method is completely metric free

and can be applied to arbitrary number of dimensions. We use this method to determine the

appropriate metric at each point in space and then use kernel-based methods for calculating

the density. The kernel-smoothed estimates were found to be more accurate and have lower

dispersion. We apply this method to determine the phase-space densities of dark matter haloes

obtained from cosmological N-body simulations. We find that contrary to earlier studies, the

volume distribution function v(f) of phase-space density f does not have a constant slope but

rather a small hump at high phase-space densities. We demonstrate that a model in which a

halo is made up by a superposition of Hernquist spheres is not capable in explaining the shape

of v(f) versus f relation, whereas a model which takes into account the contribution of the

main halo separately roughly reproduces the behaviour as seen in simulations. The use of the

presented method is not limited to calculation of phase-space densities, but can be used as

a general purpose data-mining tool and due to its speed and accuracy it is ideally suited for

analysis of large multidimensional data sets.

Key words: methods: data analysis – methods: numerical – galaxies: haloes – galaxies: struc-

ture – dark matter.

1 I N T RO D U C T I O N

One of the basic problems in data mining is to estimate the proba-

bility distributions or density distributions based on a discrete set of

points (particles) distributed in a multidimensional space. Once the

density distribution is known expectation values of other quantities

of interest can be derived. Considering the huge amounts of data

both astronomy and other fields are facing there is a need for meth-

ods that are accurate flexible and fast. However, most of the existing

methods encounter problems when applied to higher dimensions.

In the particular application of N-body simulations, the estimate of

phase-space densities is one such problem as it requires an efficient

and flexible method for six-dimensional phase space density estima-

tion for a large variety of equilibrium and non-equilibrium solutions

�E-mail: sharma@physics.arizona.edu (SS); msteinmetz@aip.de (MS)

of largely different topology (e.g. highly flattened discs, spheroidal

but anisotropic haloes, spheroidal nearly isotropic ellipticals).

The simplest method for density estimation is the k nearest

neighbour. Consider the radius r enclosing k nearest neighbours

then density is given by k/Vd (r), where Vd (r) is the volume en-

closed by a d-dimensional sphere of radius r (Loftsgaarden &

Quesenberry 1965). A more accurate method than this is the kernel

density estimation (KDE) or popularly known as smoothed parti-

cle hydrodynamics (SPH) (Gingold & Monaghan 1977; Lucy 1977;

Silverman 1986). The results are sensitive to the choice of ker-

nel function and the bandwidth of the kernel or in other words

the number of smoothing neighbours. The later being more impor-

tant. Variable bandwidth estimators are more superior as compared

to the fixed bandwidth estimators. For the multidimensional case

simple isotropic bandwidths perform poorly when the data has an

anisotropic distribution. In this case one needs to select different

bandwidths in different dimensions. In general a covariance matrix

is determined and the bandwidth is selected so as to have constant
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covariance in all directions. This leads to anisotropic kernels. The

Delaunay tessellation (Okabe, Boots & Sugihara 1992; Bernardeau

& van de Weygaert 1996; Okabe 2000; Schaap & van de Weygaert

2000) which tessellates space into disjoint regions, performs much

better for anisotropic data. Delaunay tessellation is very accurate

but also very time consuming.

Most existing methods, including both KDE and Delaunay tessel-

lation require an a priori definition of a metric of the n-dimensional

space under investigation. A suboptimal choice of metric results

in a poor estimate of the density. Metric-based density estimators

provide optimal approximations, only if covariance of the data is

identical along all dimensions, locally at each point in space. In

general, however, data is non-homogeneous and anisotropic. Con-

sequently, the above conditions cannot be realized by assuming a

global scaling relation among different dimensions. A method is

required that is adaptive to the data under investigation. Recently,

a new method dubbed FiEstAS which is metric free has been pro-

posed by Ascasibar & Binney (2005). FiEstAS is also very fast and

efficient. The method relies on a repeated binary decomposition of

space (organized by a tree data structure) until each volume element

contains exactly one particle. The accuracy of the method depends

upon the criteria used for splitting the nodes. In the simplest imple-

mentation the dimension to be divided is chosen either randomly or

alternately, guaranteeing equal number of divisions for each dimen-

sion. The more a particular dimension is tessellated the higher the

resolution achieved in that dimension. Ideally, we need a scheme

which makes more divisions in the dimension along which there is

maximum variation and few divisions (or none) along which there is

minimum (or no) variation. However, the scheme as described above

is data blind and thus fails to optimize the number of divisions to be

made in a particular dimension.

In this paper, we propose and evaluate a splitting criterion that

is based upon the concepts of Information Theory (Shannon 1948;

Shannon & Weaver 1949; Gershenfeld 1999; MacKay 2003). Space

is tessellated along the dimension having the minimum entropy

(Shannon entropy) or in other words maximum information . Conse-

quently, this scheme optimizes the number of divisions to be made

in a particular dimension so as to extract maximum information

from the data. This method can also be used to determine the metric

that locally gives approximately constant covariance. Kernel-based

methods can then be used to estimate the densities.

As an application, we study the phase-space density of dark matter

haloes obtained from cosmological simulations. The code is avail-

able upon request and in future we plan to make it publicly available

at the following url http://sourceforge.net/projects/enbid/.

2 A L G O R I T H M

The basic problem is to estimate the density function ρ(x) from a

finite number N of data points x1, x2..xN drawn from that density

function. Here xi is a vector in a space of d dimensions having com-

ponents xi
1, xi

2 .. xi
d. The overall procedure of our algorithm entropy-

based binary decomposition (EnBiD) consists of three steps, which

we will describe in detail below. First, we tessellate the space into

mutually disjoint hypercubes each containing exactly one particle.

If Vi is the volume of the hypercube containing ith particle then its

density is mi/Vi . Secondly, we apply the boundary corrections to

take into account the arbitrary shape of the volume containing the

data. Thirdly, we apply a smoothing technique in order to reduce

the noise in the density estimate.

2.1 Tessellation

We start with a root node containing all particles. The node is divided

by means of a hyperplane perpendicular to one of the axis into two

nodes each containing half the particles. If j is the dimension along

which the split is to be performed, the position of the hyperplane is

given by the median of xj . The process is repeated recursively till

each subnode contains exactly one particle (so-called leaf nodes).

Let Vi be the volume of the leaf node containing particle i, and mi

be the particle mass, then the density is given by ρi = mi/Vi . An

alternative to this, as was originally done in FiEstAS, is to calculate

the mean 〈xj 〉 and then identify two points one on each side which

are closest to the mean. The split point is then chosen mid-way

between these two points. xcut = (xleft + xright)/2. This speeds up the

tessellation.

In the implementation of FiEstAS the splitting axis alternates be-

tween the considered dimensions, which guarantees roughly equal

number of divisions per dimension. In the calculation of phase-space

densities the real and velocity space are known to be Euclidean.

Therefore, the splitting is done alternately in real and velocity space

and in each subspace the axis with highest elongation (〈x2
j 〉 − 〈xj 〉2)

is chosen to be split. This generates cells that are cubical rather

than elongated rectangular in the aforementioned subspace, and also

helps alleviate numerical problems that arise when two points have

very close values of a particular coordinate. We call this decompo-

sition which is implemented in FiEstAS as Cubic Cells while the

one free from this as General.
For N particles the binary decomposition results in 2N − 1 nodes

out of which there are N leaf nodes each having one particle. The

more a particular dimension is tessellated, the more the resolution

in that dimension. However, for data that is uniformly distributed in

a particular dimension there is actually no need to perform a split in

that dimension. This fact can be exploited to increase the accuracy

of the results.

For each node we calculate the Shannon entropy Sj along each

dimension (or subspace) and then select the axis (subspace) with

minimum entropy. The dimension having minimum entropy guar-

antees maximum density variation or clustered structures in that

dimension. In other words, we split the dimension that has the max-

imum amount of information. The entropy S along any dimension

or subspace is estimated by dividing the dimension or subspace into

Nb bins of equal size and calculating the number of points ni in each

bin (we choose Nb to be equal to the number of particles in each

node). The probability that a particle is in the ith bin is given by pi =
ni/N, where N is the total number of particles. The entropy is then

given by

S = −
n∑

i=1

pi log(pi ). (1)

Rather than treating each dimension independently it is also pos-

sible to select a subspace (real or velocity space) with minimum

entropy and then choose an axis with maximum elongation from

this subspace (Cubic Cells). This provides slightly lower dispersion

in estimated densities.

2.2 Boundary correction

The data in general might have an irregular shape and may not be

distributed throughout the rectangular volume of the root node. Con-

sequently, the densities of particles near the boundary can be under-

estimated. This is not an issue for systems with periodic boundary
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conditions but it would be for systems which are, for example, spher-

ical. In higher dimensions this correction becomes even more im-

portant since the fraction of particles that lie near the boundary

increases sharply with number of dimensions.1

In FiEstAS the following correction is implemented: suppose a

leaf node having a particle at x p has one of its surfaces in dimen-

sion i either xi = xmax or xi = xmin as a boundary, then the boundary

face is redefined such that its distance from the particle is same as

the distance of the other face from the particle. For the former the

redefinition is xi = xp
i + (xp − xmin) and for the later xi = xp

i −
(xmax − xp

i ). If both the faces lie on the boundary then the scheme

fails to apply the correction. Moreover, for small subhaloes embed-

ded in a bigger halo the subhaloes have lower velocity dispersion

and occupy a smaller region in velocity space, hence its boundary

needs to be corrected even though it is not directly derived from

the global boundary. A similar situation also arises near the centre

of the haloes for which the circular velocity Vc(r) → 0 as r → 0.

Moreover in EnBiD, we need to calculate the entropy for each node

and the boundary effects might decrease the entropy of the system

spuriously. Consequently, a boundary correction needs to be applied

to each node during the tessellation, and not just to the leaf node at

the end of tessellation. In EnBiD for each node having more than

a given threshold nb of particles, a node is checked for boundary

correction before the calculation of entropy. In a given dimension

if lmax and lmin are the maximum and minimum coordinates of a

node and xmax and xmin, the corresponding maximum and minimum

coordinates of the particles inside it, then a boundary correction is

applied if simultaneously

(lmax − xmax) > fb

xmax − xmin

nnode − 1
(2)

and

(xmin − lmin) > fb

xmax − xmin

nnode − 1
, (3)

where fb is a constant factor. This is effective in detecting embedded

structures. To check for corrections applicable for only one face,

the value of fb is chosen to be five times higher. For cubical cells

in real and velocity space f b = 0.5N1/d was found to give optimal

results, where N is the total number of particles in the system. For

general decomposition the corresponding value of fb was found to

be 2.0N1/d . The node boundary lmax and lmin are corrected as

lmax → xmax + xmax − xmin

nnode − 1
, (4)

lmin → xmin − xmax − xmin

nnode − 1
, (5)

where (xmax − xmin)/(nnode − 1) is the expected mean interparticle

separation.

The choice of nb is dictated by two factors (a) if d is the number

of dimensions of the space then a minimum of d + 1 particles are

needed to define a geometry in that space so we set nb � d + 1. If

the number of particles in a node are too small this leads to Poisson

errors in the calculation of the interparticle separation so we impose

a lower limit of nb = 7.

1 For 106 particles distributed uniformly inside a spherical region, the frac-

tion of particles that lie near the boundary is 5 per cent and for a a three-

dimensional space and 79 per cent for a six-dimensional space.

2.3 Smoothing

The unsmoothed density estimates have a large dispersion which

cannot be reduced even by increasing the number of particles. By

smoothing this dispersion can be reduced provided the density does

not vary significantly over the smoothing region. We test two differ-

ent smoothing techniques. The FiEstAS smoothing as proposed by

Ascasibar & Binney (2005) and the kernel-based scheme (KDE).

In FiEstAS smoothing, first the density of each node is calculated

assuming that the mass of each particle is distributed uniformly

over its leaf node. Next the volume Vs centred on that point which

encompasses a given smoothing mass Ms is calculated. The density

estimate is then given by ρ = Ms/Vs. For Cubic tessellation the

smoothing cells are also chosen to be exactly cubical in the real and

velocity subspaces. To calculate Vs an iterative procedure is used.

We start with a hyperbox having boundaries in the ith dimension

at xi ± �i , �i being the distance to the closest hyperplane along

ith axis of the leaf node containing the point x . �i is then doubled

until the mass enclosed by smoothing box M < Ms and then the

interval is halved repeatedly till |(M − Ms)/Ms| � ηtol, where ηtol

is a tolerance parameter. Our experiments show that a tolerance

parameter of 0.1 gives satisfactory results. Although in FiEstAS

the smoothing mass Ms = 10 mp is chosen, we find that choosing

Ms = 2 mp gives a higher resolution, while not compromising much

on the noise reduction.

In kernel smoothing a fixed number of nearest neighbours around

the point of interest are identified and the density is computed by

summing over the contributions of each of the neighbours by using

a kernel function. This is known as the adaptive kernel smooth-

ing since the smoothing length is ∝ ρ1/d , ρ being the density in a

d-dimensional space. The kernel function can be spherical of the

form of W (u), u =
√∑d

i=1
u2

i being the distance of the neighbour

from the centre and ui the corresponding coordinates in a

d-dimensional space, or of the form of �d
i=1 W(ui ) known as the

product kernel. The standard kernel scheme provides a much poorer

estimate of the phase-space density, since a global metric is usually

unsuitable in accounting for the complex real and velocity struc-

ture encountered in many astrophysical systems. However, with a

method like EnBiD we can determine the appropriate metric at each

point in space and thus force the covariance to be approximately

same along all dimensions. At any given point the correct metric

can be calculated by determining the sides of the leaf node which

encompasses that point, followed by a coordinate transformation

such that the node is transformed into a cube. As we illustrate in

Appendix A, the kernel density estimator can have a significant bias

in the estimated densities. The results we show here are after cor-

recting for this bias. We tested and compared the use of spline and

the Epanechnikov kernel function and found the later to be more

efficient. For all our analysis we use the Epanechnikov kernel func-

tion. Bias correction and other details pertaining to kernel-based

methods, that is, the number of smoothing neighbours are given

in Appendix A. The algorithm implemented in EnBiD for nearest

neighbour search is based on the algorithm of SMOOTH (Stadel 1995).

Although the length of the sides of a node provides an accurate

estimate of the metric but when trying to smooth over a region,

the smoothing region might exceed the boundaries of the actual

particle distribution. The smoothing lengths in such case needs to

be appropriately redefined. This situation arises in cases where a

dimension has very less entropy and has been split many times or

near the boundaries of the system where the metric has not been

accurately determined. In a given dimension let lmax and lmin be the

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 1293–1307



1296 S. Sharma and M. Steinmetz

maximum and minimum coordinates of a smoothing box or a sphere

encompassing a fixed number of neighbours Nngb and xmax and xmin

the maximum and minimum coordinates of the particles inside it. A

smoothing length correction is applied to the box, if simultaneously

the distance to both the right and left boundaries given by

(lmax − xmax) > 25(xmax − xmin)

Nngb

, (6)

(xmin − lmin) > 25(xmax − xmin)

Nngb

, (7)

where Nngb is the number of smoothing neighbours. The metric is

redefined with lmax and lmin set to xmax and xmin. For FiEstAS smooth-

ing also we implement a similar smoothing volume correction. For

a given smoothing box of volume Vs, if mi is the mass contributed

by a leaf node to the smoothing box and vi its corresponding vol-

ume that falls within the box, then instead of calculating the density

as ρ = ∑
mi/Vs, we calculate it as ρ = (

∑
mi )/(

∑
vi ). This

correction is only applied if (
∑

vi )/Vs < 0.5.

3 T E S T S

To test the accuracy of the results we generate test data with a

given density distribution in a d-dimensional space and then per-

form a comparison with the density estimates given by the code.

We employ systems which have an analytical expression of six-

dimensional phase-space density f, namely an isotropic Hernquist

sphere (cf. Ascasibar & Binney 2005) and an isotropic halo with a

Maxwellian velocity distribution (cf. Arad, Dekel & Klypin 2004).

The test cases are generated by discrete random sampling of this

density function f using a fixed number of particles N. We show

here results of tests done in six dimensions only and with boundary

correction and smoothing. Results pertaining to three dimensions

and effects of boundary correction and smoothing are discussed in

detail in Ascasibar & Binney (2005).

3.1 Hernquist sphere

For a Hernquist (1990) sphere of total mass M and scale length a
the real-space density is given by

ρ(r ) = M/(2πa3)

(r/a)[1 + (r/a)]3

and gravitational potential is given by

φ(r ) = − G M

a

1

1 + (r/a)
.

The phase-space density as a function of energy E = v2/2 + φ(r)

is

f (E) = M/a3

4π3(2G M/a)3/2
(8)

×3 sin−1 q + q
√

1 − q2(1 − 2q2)(8q4 − 8q2 − 3)

(1 − q2)5/2
, (9)

where

q =
√

− E

G M/a
.

First, we generate a random realization in real-space correspond-

ing to density given by equation (8). Then, we use von Neumann

Figure 1. Dependence of fraction f /f t on ft and v(f) and α(f) on f for a

Hernquist sphere with N = 106 particles obtained by different algorithms

for density estimation. Vertical dotted lines mark the position where f /f t =
0.5. EnBiD resolves the high-density regions better by about two decades

in density. Kernel smoothing using the metric as determined by EnBiD per-

forms even better (a gain in resolution of about three and four decades). Using

a smaller number of smoothing neighbours results in higher resolution.

rejection technique to generate the velocities that sample the distri-

bution Press et al. (1992).

p(v)dv = 4π

ρ(r )
f

[
v2

2
+ 	(r )

]
v2 dv.

Further details can be found in Ascasibar & Binney (2005). For

calculating the virial quantities of a Hernquist sphere we use c =
RV ir/a = 4.0 which roughly corresponds to an NFW halo with c =
8.0.

In top panel of Fig. 1, we plot the ratio of numerically estimated

phase density f evaluated by the respective method to the analytical

phase-space density ft, as a function of ft for a Hernquist sphere

sampled with 106 particles. f is calculated by binning the particles

in 80 logarithmically spaced bins in ft with at least five particles per

bin and then evaluating the mean value of the estimated density of

all the particles in the bin.

Ideally one expects the plot to be a straightline with f /f t = 1.

It can be seen from the figure that the density is well reproduced

for most of the halo for about 18 decades in density except near

the very centre where the density is very high. Both FiEstAS and

EnBiD tessellation, followed by FiEstAS smoothing with Ms =
2mp, underestimate the density in the region of very high density,

however when compared to FiEstAS tessellation the high density

cusp is resolved better by EnBiD by about two decades in density. In

real space there is more variation of density as compared to velocity

space. EnBiD accounts for this by allocating more divisions in real

space thereby achieving higher spatial resolution, whereas FiEstAS

gives equal weight to both spaces and ends up thus compromising

the spatial resolution. When kernel smoothing is employed along
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with metric as determined by EnBiD tessellation (EnBiD+Kernel

Smooth), there is a further gain in resolution by about three and

four decades for smoothing neighbours n = 40 and 10, respectively.

Lowering the number of smoothing neighbours results in higher

resolution.

Next we compare the volume distribution function v(f) as repro-

duced by the code. Numerically v(f) is evaluated by binning the

particles as before in logarithmically spaced bins of f. If mbin is the

mass of all the particles in the ith bin, the density of the bin being

f bin = (f i+1 + f i )/2 then v(f bin) = (mbin/f bin)/(f i+1 − f i ). Statistical

error in each bin is given by �f = f bin − 〈f bin〉 (where 〈f bin〉 is the

mean value of density of all the particles in the bin). Analytically

the volume distribution function is given by

v[ f (E)] = g(E)

f ′(E)
, (10)

where g(E) is the density of states. For a Hernquist sphere

g(E) = 2π2a3(2G M/a)1/2

3q5
[3(8q4 − 4q2 + 1) cos−1 q

− q(1 − q2)1/2(4q2 − 1)(2q2 + 3)].

It can be seen from middle panel of Fig. 1 that v( f ) is well repro-

duced by both FiEstAS and EnBiD. However, in the high density

region FiEstAS underestimates v( f ) which results in steepening of

the volume distribution function at the high f end, while EnBiD

estimates the v( f ) accurately to much higher densities.

This can be seen more clearly in lower panel of Fig. 1, where we

plot the logarithmic slope denoted by α of the volume distribution

function as function of density f.

α = d log[v( f )]

d log( f )

FiEstAS can reproduce the slope parameter α only till f /f Vir =
102 whereas EnBiD can reproduce it till f /f Vir = 104 and EnBiD

+ Kernel Smooth can reproduce it till f /f Vir = 105 and 106, for

smoothing neighbours n = 40 and 10, respectively.

In order to get an estimate of the dispersion in the reproduced

values of f and in order to check the effectiveness of smoothing we

plot in Fig. 2 the probability distribution of f /f t. The distribution

can be fitted with a log-normal distribution and the fit parameters

are also shown in the figure. The bias is less than 0.03 dex for all the

methods. The unsmoothed estimates have a dispersion of 0.37 dex.

FiEstAS smoothing with Ms = 2 is equivalent to kernel smoothing

with smoothing neighbours n = 40. Both of them have a disper-

sion of about 0.1 dex. For kernel smoothing lowering the smooth-

Figure 2. Probability distribution P[log (f /f t)] for a Hernquist sphere with

N = 106 particles obtained by different algorithms for density estimation.

Figure 3. Dependence of fraction f /f t on ft for a Hernquist sphere with

N = 106 particles obtained by different algorithms for density estimation.

ing neighbours to n = 10 results in an increase in dispersion to

0.18 dex.

The EnBiD tessellation in the results as analysed above was done

with Cubic Cells in real and velocity space. In top right hand panel of

Fig. 3, we compare the results as obtained with General decomposi-

tion where each dimension is treated independently. Kernel smooth-

ing with smoothing neighbours n = 10 was employed for both of

them. The estimates are nearly identical. There is a slight gain in

resolution but the estimates with General decomposition were also

found to have a slightly higher dispersion in the estimates. In bot-

tom right hand panel, we compare the result of smoothing between a

product kernel and a spherical kernel. There is very little difference

between the estimates. The number of neighbours were chosen so

as to have identical dispersions in both the estimates. When using

the kernel in product form about double the number of neighbours

are needed to obtain identical dispersion.

In top left hand panel,f we compare the unsmoothed densities

with FiEstAS smoothed densities. For both of them EnBiD scheme

is used for tessellation. The unsmoothed estimates are the densities

as determined from the volume of the leaf nodes generated by the

tessellation procedure. The FiEstAS smoothing only reduces the

dispersion the resolution remains nearly unaltered. The resolution

and accuracy is essentially determined by the density of the leaf

nodes. Next we compare the FiEstAS smoothing with cloud in cell

(CIC) scheme (Hockney & Eastwood 1981) of density estimation.

The CIC method of density estimation is a special case of smoothing

with a product kernel along with a linear kernel function W(u) ∝
(1 − u). Although the FiEstAS smoothing is similar to the cloud

in a cell scheme of density estimation but is still unique in its own

respect. The main difference being that the clouds which are the

leaf nodes in case of FiEstAS smoothing are disjoint whereas in

CIC scheme or in general for kernel-based schemes they are over-

lapping. They can smooth over much smaller regions and hence

achieve higher resolution as compared to FiEstAS smoothing. In

bottom left hand panel, we plot the estimates of FiEstAS smooth-

ing alongside the estimates as obtained with product kernel with

smoothing neighbours n = 18. Instead of a linear kernel function

we use the Epanechnikov kernel. It can be seen from the figure that
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Table 1. Comparison of time needed to calculate densities by various meth-

ods: this is the time taken to calculate the six-dimensional phase-space den-

sity of a Hernquist sphere with 106 particles on an AMD XP2000+ processor

having a clock speed of 1666.67 MHz.

Method Smoothing Tree Smooth Total

tessellation building

AD Delaunay 1 week

AB FiEstAS FiEstAS Ms = 10mp 4 s 730 s 724 s

FiEstAS FiEstAS Ms = 10mp 8 s 522 s 532 s

FiEstAS FiEstAS Ms = 2mp 8 s 306 s 317 s

EnBiD FiEstAS Ms = 2mp 19 s 336 s 356 s

EnBiD Kernel Nsm = 40 19 s 843 s 863 s

EnBiD Kernel Nsm = 10 19 s 405 s 426 s

the resolution achieved with product kernel is higher as compared

to that of FiEstAS smoothing.

When decomposition was done alternately in each dimension the

median criterion gave more accurate results. However for EnBiD

decomposition choosing the splitting point at either the mean or the

median both gave similar results for density estimation of a Hern-

quist sphere, but for a system having substructures the mean criterion

gave better results. For all our analysis unless otherwise mentioned,

for evaluating phase-space densities we use EnBiD decomposition

with Cubic Cells to determine the metric and then use the method

of spherical kernel smoothing for calculating densities. The mean

criterion is used for choosing the splitting point. The number of

smoothing neighbours n is chosen to be 40, although choosing n =
10 gives higher resolution but it also has higher dispersion which

means that the volume distribution function will be smoothed out

below the scale set by the dispersion (see Section 3.2 for more ex-

planation).

In Table 1, we compare the CPU time needed to estimate the

phase-space density of 106 particles in a Hernquist sphere by var-

ious methods and techniques. The time as reported by Ascasibar

& Binney (2005) for FiEstAS is labelled as AB FiEstAS and the

time as reported by Arad et al. (2004) for Delaunay tessellation

method as AD Delaunay. It can be seen that most of the time is

needed for smoothing. For both FiEstAS and kernel smoothing,

increasing the smoothing mass or the number of smoothing neigh-

bours, increases the time. Our implementation of FiEstAS smooth-

ing is slightly faster as compared to that of Ascasibar & Binney

(2005) due to better cache utilization. This is achieved by ordering

the particles just as they are arranged in the binary tree. The ker-

nel smoothing which gives more accurate results requires a modest

20 per cent more time as compared to the time reported in Ascasibar

& Binney (2005) for FiEstAS. For median splitting it is possible to

speed up the neighbour search by about 10 per cent.

3.2 Maxwellian velocity distribution models

For these models the phase-space density is given by

f (r , v) = ρ(r )[2πσ (r )2]−3/2ev2/2σ (r )2
, (11)

where ρ(r) is the real-space density given by

ρ(r ) = e−r/(5rs )

(r/rs)α(1 + r/rs)3−α
.

The velocity dispersion is assumed to be either constant with

σc(r) = 0.1 or variable with σv(r ) = √
M(r )/r . We generate models

with α = 0 and 1.

Figure 4. The cumulative distribution of f /f t as measured in different bins

of ft for three different mock systems. The density is progressively overes-

timated in low density regions.

The volume distribution function v(f) for such systems is given

by

v( f ) = (4π)2

f

∫ r ( f )

0

r 2σ (r )3

√
2 log

f (r )

f
dr , (12)

where

f (r ) = ρ(r )

[2πσ (r )2]3/2
. (13)

In Fig. 4, we show the volume distribution function as recovered

by EnBiD along with kernel smoothing for three different models

(1) α = 0, σc (2) α = 1, σc and (3) α = 1, σ v and with three different

particle resolutions N = 104, 105 and 106. For the highest resolution

the volume distribution can be recovered for about nine to 13 decades

in f. The range of densities over which the v( f ) is reliably recovered

increases with increasing particle number. For systems with a sharp

transition in slope of v( f ) for example α = 0, σc system, Delaunay

tessellation was found to significantly overestimate v( f ) (fig. A2;

Arad et al. 2004), because the measured v( f ) can be thought of as a

convolution of the exact vt ( f ) with a fixed window function p( f /f t).

The narrower the p( f /f t) the closer is v( f ) to vt ( f ). If vt ( f ) varies

significantly overscales smaller than the width of p( f /f t) the shape

of recovered v( f ) will be affected. The v( f ) will be overestimated

for a system with a sharp change in the slope of v( f ). Moreover due

to the width of p( f /f t) the effective cut-off value of f is also higher

as compared to the theoretically expected upper bound. A bias in

p( f /f t) will also affect the results. Delaunay tessellation estimates

have a width of about one decade in the distribution of p( f /f t). With

EnBiD (using smoothing neighbours n = 40) for α = 0, σc system

at the high f end there is very little width in the recovered values

of f, this is the reason that v( f ) is recovered better by EnBiD as

compared to Delaunay tessellation (Fig. 4). For other systems the

range of f over which v( f ) is recovered is slightly higher for EnBiD
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(using smoothing neighbours n = 10) as compared to Delaunay

tessellation (figs A2 and A3, Arad et al. 2004).

4 P H A S E - S PAC E S T RU C T U R E O F DA R K
M AT T E R H A L O E S

We are now applying our tools to the phase-space structure of

virialized dark matter haloes in a concordance �CDM universe

(Melchiorri et al. 2003; Spergel et al. 2003). The structure of these

haloes in real space has been studied in great detail over the past

decade and the radial density profile is known to follow an al-

most universal form known as the NFW (Navarro, Frenk & White

1996, 1997) profile. [See however Navarro et al. (2004) for a new α

profile.]

ρ(r ) = ρs

(r/rs)(1 + r/rs)2
. (14)

The dark matter particles are collisionless and obey the collisionless

Boltzmann equations. For a collisionless spherical system in equi-

librium with a given density profile ρ(r) the phase-space density

f(r, v) can be calculated using the Eddington equation (Binney &

Tremaine 1987).

f (ε) = 1√
8π2

[∫ ε

0

d2ρ

dψ2

dψ√
ε − ψ

− 1

ε

(
dρ

dψ

)
ψ=0

]
.

Since f is a function of six variables it is hard to study except in

cases where there are isolated integrals of motion which reduce the

number of independent variables. To study the structure of phase

space density, the function v( f ) is introduced which is the volume

distribution function of f. v( f ) d f is the volume of phase space

occupied by phase-space elements having density between f to f + df.
Arad et al. (2004) calculated the phase-space density using Delaunay

Tessellation in six dimensions and studied the volume distribution

function of haloes obtained from simulations. They found that v( f )

follows an almost universal form which is a power law with slope

−2.5 ± 0.05 which is valid for about four decades from fVir to

f Vir 104. fVir is an estimate of the phase-space density in the outer

parts of the halo.

fVir = ¯ρVir

π3/2V 3
Vir

=
(

3�ρc

4π4G3

)1/2
1

MVir

= 1.64 × 109h2 M	 kpc−3( km s−1)−3

(MVir/ M	h−1)
, using � = 101.

This behaviour was also found to be independent of redshift and

the mass of the halo. Ascasibar & Binney (2005) used the FiEstAS

algorithm to calculate the phase-space densities and confirmed the

above result and in addition found slight deviations both at low and

Table 2. Properties of haloes whose phase space structure is analysed here: Ncut is the number of particles that lie within

a cut-off radius Rcut. These are the particles that are used for calculating the volume distribution function v( f ) of the halo.

Halo Ncut Rcut RVir MVir Hubble h Softening Code Power

parameter spectrum

(kpc) (kpc) ( M	) (kpc)

A 6.2 × 105 348.9 348.9 2.11 × 1012 0.65 0.30 GADGET �CDM

B 6.1 × 105 692.6 692.6 1.65 × 1013 0.65 1.53 GADGET �CDM

C 3.2 × 105 463.2 463.2 4.93 × 1012 0.65 1.53 GADGET �CDM

D 6.5 × 106 1854.0 1854.0 3.2 × 1014 0.70 ART �CDM

A′ 4.5 × 105 312.1 312.1 1.51 × 1012 0.65 0.30 GADGET WDM

high f end. At the low f end (near fVir) the slope was found to be

flatter than −2.5 and at the high f end it was found to be significantly

steeper. At the high f end there are two relevant numerical phase-

space densities, above which two-body relaxation and discreteness

effects in simulations start dominating. The phase-space density

above which the two body relaxation is shorter than the age of the

universe is given by (Diemand et al. 2004)

frelax = 0.34

(2π)3/2G2 ln �

1

mpt0

(15)

= 1.94 × 107 h2 M	 kpc−3 (km s−1)−3

(mp/ M	 h−1)
. (16)

The above value is obtained by assuming a Coulomb logarithm of

ln � = 6 and using t0 = 14.5 Gyr as the age of the Universe. The

phase-space density, above which the discreteness effects discussed

by Binney (2004) become important, is

fdiscr = (�mρc)2

H 3
0 mp

(17)

= 6.93 × 106 h2 M	 kpc−3 (km s−1)−3

(mp/ M	 h−1)
. (18)

Since the steepening was found to roughly coincide with these den-

sities, this effect was attributed by Ascasibar & Binney (2005) to

the numerical effects of the simulations.

We analyse five haloes at z = 0 simulated in a �CDM cosmology

with �λ = 0.7, �m = 0.3. To evaluate the phase-space densities we

use the EnBiD scheme along with kernel smoothing employing n =
40 neighbours. Haloes A, B and C were isolated from a cosmologi-

cal simulation of 1283 dark matter particles in a 32.5 h−1 Mpc cube

performed by AP3M code (Couchman 1991) and were then resim-

ulated at higher resolution from z = 50 to 0 using the code GADGET

(Springel, Yoshida & White 2001). Halo A′ is a warm dark matter

(WDM) realization of halo A which was generated by suppressing

power on scales smaller than the size of the halo. Halo D is from a

simulation done with an ART code (Kravtsov, Klypin & Khokhlov

1997) with a box size of 80 h−1 Mpc. Further details are given in

Table 2. For calculating phase-space densities we use the EnBiD

tessellation scheme and smoothing is done with a spherical kernel

employing n = 40 neighbours.

It can be seen from Fig. 5 that at the high f end there are differ-

ences between the phase-space properties of haloes as reproduced

by EnBiD (kernel smoothing using 40 neighbours) and FiEstAS

(FiEstAS smoothing using smoothing mass Ms = 2mp). We argue

that the steepening of the volume distribution function as found by

Ascasibar & Binney (2005) is probably an artefact of the FiEstAS

algorithm since such a steepening also appears in tests done with a

pure Hernquist sphere (Section 3.1). For EnBiD we do not see such

steepening; on the contrary, we see a slight hump. This however

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 1293–1307



1300 S. Sharma and M. Steinmetz

Figure 5. Comparison between density estimators EnBiD and FiEstAS in

extracting the volume distribution function and the slope parameter α of a

�CDM halo. The vertical dotted lines mark the position of f = f discr and

f = f relax (fdiscr being less than frelax). The solid vertical line marks the point

where statistical errors (�f /f > 0.1 in a bin) in calculation of v( f ) become

important (dashed one for FiEstAS) . The estimator FiEstAS fails to resolve

the high density regions accurately and this results in steepening of the v( f )

profile.

does not preclude the association of discreteness and relaxation ef-

fects with the phase-space structure of haloes. Since we do not know

the real phase space density of the halo it is difficult to disentangle

any such effect from the effect of the estimator. For a WDM halo

whose profile we expect to be the same as that of a Hernquist sphere

we do see a sudden change in slope at around frelax (Fig. 10). Also

the slope parameter of �CDM haloes have a maximum which is

around f discr and beyond this it starts to fall off Fig. 8. At the low f
end the flatness in v( f ) profile is partly due to the truncation of the

halo at a finite radius r = RVir. This is demonstrated in Fig. 6 where

for a synthetic Hernquist sphere with Rcut = RVir the v( f ) profile is

found to flatten out beyond f = f Vir and α( f ) rises sharply. The cos-

mological haloes exhibit a flattening that is more pronounced than

the synthetic haloes. This suggests that their structure is slightly dif-

ferent from that of an equilibrium spherical model corresponding to

a given density profile. Models with anisotropy in the velocity dis-

persion also do not seem to suggest any extra flattening of the v( f )

profile. One possibility which was suggested earlier (Ascasibar &

Binney 2005) was that this could be due to depletion of low density

phase space by the presence of high density subhaloes co-occupying

the same space. This can be ruled out as the low f behaviour of a

WDM halo that does not exhibit significant substructure is identical

to that of a �CDM halo.

Next we analyse the phase-space structure of haloes simulated

in a �CDM cosmology. We see the existence of a slight departure

from the constant power law behaviour at the high f end (Fig. 7).

The slope parameter α (Fig. 8) has a minimum at around f /f Vir =
10 and then it rises reaching a peak at around f /f Vir = 104. Beyond

this it starts to falls off.

Figure 6. Effect of truncation on the slope parameter α as extracted from

a mock Hernquist sphere. The dotted line is the true analytical profile of a

Hernquist sphere. For a halo whose Rcut = RVir and c = 4.0 the α profile can

only be extracted till f = f Vir. The rise in value of α beyond this is due to

truncation of the halo. The thin dark line is for a WDM halo obtained from

simulations.

Figure 7. Volume distribution function of phase-space density, v( f ) for four

haloes obtained from �CDM simulations. The values of v( f ) for haloes B,C

and D have been shifted by 10, 20 and 30 decades, respectively for the sake

of clarity. For reference v( f ) ∝ f −2.5 curve (matched at f /f Vir = 10 )is

plotted by a dotted line. An explanation of vertical lines is given in Fig. 5.

In order to check whether the power law type behaviour of the

volume distribution function is due to the substructure or whether

it is associated with the virialization process we simulated a WDM

halo whose power on small scales has been suppressed and we find

that it has a steeper slope at the high f end (Fig. 9). Its slope parame-

ter α as a function of f is roughly consistent with that of a Hernquist

sphere (Fig. 10). This suggests that the shape of the volume distri-

bution function is governed by the amount of substructure and its

mass function.
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Figure 8. The dependence of slope parameter α on f for four haloes obtained

from �CDM simulations. The values of α for haloes B, C and D have been

shifted by 3, 6 and 9, respectively for the sake of clarity. An explanation

of vertical lines is given in Fig. 5. The dashed line represents the analytical

profile of the parent + substructure model. The dotted line is the profile as

estimated by EnBiD for the synthetic realization of the corresponding model.

The parameter α does not have a constant value of −2.5 but has a dip and rise

and is bounded between −2.8 (the asymptotic value of a Hernquist sphere)

and −2.1 (the value predicted by the AD toy model) which are indicated by

horizontal dotted lines.

Figure 9. The volume distribution function of phase-space density v( f ) for

a �CDM and a WDM halo. The WDM profile has been shifted vertically

by 10 decades. An explanation of vertical lines is given in Fig. 5. The WDM

profile is significantly steeper in high density regions as compared to v( f )

∝ f −2.5 behaviour which is indicated by a dashed line.

4.1 A toy model: superposition of subhaloes

An elegant toy model to explain the near power-law behaviour of

the volume distribution function of simulated �CDM haloes was

proposed by Arad et al. (2004, model AD). In this model the halo

is assumed to be made up of a superposition of subhaloes with a

given mass function of d n/d m ∝ m−γ each obeying a universal

functional form for f. The volume distribution function can then be

Figure 10. The dependence of slope parameter α on f for a �CDM and a

WDM halo. The behaviour of WDM halo profile is in agreement with that

of a Hernquist sphere while that of �CDM halo is close to that of a parent

+ substructure model. The vertical lines mark the position of f stat, f relax and

fdiscr for the �CDM halo.

written as

v( f ) =
∫ μM

0

dn

dm
vm( f ) dm ∝ f −(4−γ ), (19)

where μM is the mass of the largest subhalo. However, for γ =
1.9, as derived by (De Lucia et al. 2004), this model predictsv( f )

∝ f −2.1, rather than v( f ) ∝ f −2.5 as found in Arad et al. (2004).

Ascasibar & Binney (2005) modified this model by pointing out

that the lower limit of the integral in equation (19) cannot be zero

(model AB) since the resolution of the simulation imposes a limit

on the minimum mass that a subhalo can have. For a halo sampled

with a finite number of particles each of mass mp the minimum mass

of a subhalo is mmin ∼ 100 mp. The analysis as done in Ascasibar &

Binney (2005) assumes the subhaloes to be Hernquist spheres and

approximates its distribution function by a double power law

vm( f ) =
{

5.46 × 10−38m3
(

f
k/m

)−1.56
f � k/m

5.46 × 10−38m3
(

f
k/m

)−2.80
f � k/m,

(20)

where k = 3.25 × 1018 M2	 Mpc−3 (km s−1)−3. The distribution

function can then be written as

v( f ) = 3.18

(
f

k

)−2.1

− m0.54
min

0.54

(
f

k

)−1.56

− m−0.7
min

0.7

(
f

k

)−2.8

(21)

for k/mmax � f � k/mmin and

v( f ) ∝
{

f −1.56 f � k/mmax

f −2.80 f � k/mmin.
(22)

In Fig. 11, we plot the slope parameter α as function of f as predicted

by the AD and AB toy models (equation 21). It can be seen that in

the limit the parameter mmin → 0 and parameter mmax → ∞ the AB

model approaches the AD model. We can see that either model fails

to reproduce the behaviour seen in simulations.

In both the models it was assumed that the entire halo is made

up by superposition of subhaloes with a mass function given by

dn/dm ∝ m−γ . In the analysis done by De Lucia et al. (2004),

where this mass function was determined, the background parent

halo which, which accounts about 90 per cent of the total mass, is

excluded from the calculation. The parent halo here is not a part

of the substructure population. We take this fact into account and

develop a model in which we account separately for the contribution

of the parent halo. The halo consists of (1) the parent halo with mass
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Figure 11. Dependence of slope parameter α on f as predicted by the toy

model proposed in Arad et al. (2004) (AD) and the subsequent modification

suggested by Ascasibar & Binney (2005) (AB). In the limit the parameter

mmin → 0 and parameter mmax → ∞ the AB model goes over to AD model.

Figure 12. Volume distribution function of phase-space density, v( f ) as

predicted by the parent + substructure model proposed here. Curves for

the parent halo and the subhaloes were shifted vertically by two decades

for clarity. The model v( f ) shows a slight hump beyond f /f Vir = 102 as

compared to the constant slope v( f ) ∝ f −2.5 behaviour. This is the point

where the subhalo’s contribution to v( f ) starts to dominate over the parent

halo’s contribution.

(1 − f sub)M modelled as a Hernquist sphere and (2) the substructure

of total mass f sub M which is modelled as a superposition of Hern-

quist spheres with a mass function of d n/d m ∝ m−γ . To calculate

the scale radius a of a subhalo of mass m we use the virial scaling

relation MVir ∝ R3
Vir which gives m ∝ a3 (assuming concentration

parameter to be same for all subhaloes). In Fig. 12, we plot the vol-

ume distribution function as predicted by this model for f sub = 0.1,

mmin = 10−4 M. In order to calculate v( f ) we employ a semi-analytic

technique. We generate a subhalo population corresponding to the

given mass function and mass fraction fsub and then for a given value

of f we sum the volume contribution of each subhalo along with the

parent halo to give the total v( f ). The v( f ) for each subhalo is deter-

mined using equations (9) and (10). The total v( f ) as predicted by

this model is close to the expected v( f ) ∝ f −2.5 behaviour but there

is a presence of a slight hump in the high f part. This is similar to

what we saw for �CDM haloes Fig. 7. In the high f part v( f ) is dom-

inated by the substructure component the transition being at around

f /f Vir = 102. In Fig. 13, we plot the slope parameter α as predicted

by the model for various values of fsub and mmin.

Figure 13. Dependence of slope parameter α on f as predicted by the parent

+ substructure model proposed here for different values of the parameters,

subhalo mass fraction fsub and minimum mass of subhalo mmin. The profile

has a minimum at log (f /f Vir) ∼ 1.5 and maximum at log (f /f Vir) ∼ 3. As fsub

increases (keeping mmin = 10−4 M constant) the minimum point of α moves

up till it matches with with the f sub = 1 AB toy model. On the other hand

as mmin is increased (keeping f sub = 0.1 constant) the maximum point of

α drops down and ultimately it merges with the substructure-less Hernquist

profile f sub = 0.

Figure 14. Effect of changing the number of smoothing neighbours on the

slope parameter α for a WDM halo. Results are shown for kernel smoothing

with smoothing neighbours n = 40 and n = 10. The slope parameter α for

a Hernquist sphere and a model with mmin = 10−5 and f sub = 0.002 is also

plotted alongside.

In Fig. 8 α(f) corresponding to model with parameters f sub = 0.05,

mmin = 10−5 M is compared against α(f) for simulated haloes. It can

be seen that the model (analytical profile) is successful in qualita-

tively explaining the behaviour of the simulated haloes (namely the

dip and the peak) but there is still some difference at the low f end.

At the low f end near fVir, parameter α rises much more sharply as

compared to the model, even after taking the truncation effect into

account.

In Fig. 14, we show the effect of varying the number of smoothing

neighbours on the α profile of a WDM halo. Lowering the number

of smoothing neighbours to 10 makes the slope parameter rise to

a peak at the high f end. Since with n = 10 dispersion in den-

sity estimates is high, this also results in a slight flattening of the

α profile around f = f Vir, where α is found to rise steeply. Plotted

alongside is the α profile of the best fit parent + subhalo model. The

α profile of the WDM halo is consistent with a model having sub-

structure mass fraction f sub = 0.002. In Fig. 15, we plot the particles
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Figure 15. The x versus y and Vx versus Vy scatter plot of particles having

phase-space density above 103 f Vir for a WDM halo. In top panels the density

is evaluated by using kernel smoothing with 40 smoothing neighbours while

in lower panels the density is evaluated using 10 smoothing neighbours.

having f /f Vir > 103 in both real and velocity space. In top panels the

density was estimated using n = 40 neighbours, while for lower pan-

els the density was estimated using n = 10 neighbours. It can be seen

from the figure that WDM halo is not completely free from substruc-

ture. More substructure is resolved using smaller number of smooth-

ing neighbours. The fact that even such a small amount of substruc-

ture can be detected demonstrates the superior ability of the esti-

mator in resolving the high density regions. It also suggests that the

slope parameter α plotted as a function of f can be used as a sensitive

tool to estimate the amount of substructure and the mass function of

subhaloes.

To further check the efficiency of the code in reproducing the

phase space density of a system with substructure we generated a

mock system with f sub = 0.1 and mmin = 10−4, and calculated its

phase-space density using EnBiD. The results are shown in Fig. 16.

The subhaloes where distributed uniformly inside the virial radius

Figure 16. Dependence of slope parameter α on f as recovered by EnBiD

from a parent + substructure model. The fraction of mass in the form of

substructure is f sub = 0.1, and the minimum mass of the substructure is

mmin = 10−4 M, M being the total mass of the system. The theoretically

expected slope parameter for the above model and for a Hernquist sphere

without any substructure is also plotted alongside. For a system sampled

with 106 particles, the parameter α can be accurately predicted till f /f Vir =
104 using kernel smoothing with 10 smoothing neighbours.

of the parent halo and their centre of mass velocity was also chosen

so as to have a uniform random distribution within a sphere of radius

VVir in velocity space. For a system modelled with 106 particles, the

phase-space structure till f = 104 f Vir is successfully reproduced

by using kernel smoothing with 10 smoothing neighbours. If 40

smoothing neighbours are used the high density regions are poorly

resolved. Lowering the total number of particles in the system also

leads to poor resolution at the high f end.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a method for estimation of densities in a multidi-

mensional space based on binary space partitioning trees (Ascasibar

& Binney 2005). We implement a node splitting criterion that

uses Shannon entropy as a measure of information available in a

particular dimension. The new algorithm makes the scheme met-

ric free and recovers maximum information available from the

data with a minimum loss of resolution. In our tests on systems

whose density distribution is known analytically, we find signif-

icant improvement in estimated densities as compared to earlier

algorithms.

We suggest how kernel-based schemes (SPH) or in general any

metric-based scheme can be implemented within the framework of

the new algorithm: the algorithm EnBiD is used to determine the

metric at any given point, which has the property that locally the co-

variance of the data points has a similar value along all dimensions.

Next we incorporate this metric into kernel-based schemes and use

them for density estimation. We also show that SPH schemes suffer

from a bias in their density estimates. We suggest a prescription that

can successfully correct the bias.

As an immediate application, we employ this method to anal-

yse the phase-space structure of dark matter haloes obtained from

N-body simulation with a �CDM cosmology. We find evidence for

slight deviations from the near power law behaviour of the volume

distribution function v( f ) of haloes in such simulations. At the high

f end there is slight hump and the low f end there is significant

flattening. We also analysed a WDM halo and found that its slope

parameter profile α(f) at the high f end is consistent with that of an

equilibrium Hernquist sphere having a very small amount of mass

(0.2 per cent) in the form of substructure.

In �CDM haloes the contribution to the volume distribution

function at the high f end is dominated by the presence of sig-

nificant amount of substructure. We devise a toy model in which

the halo is modelled as a Hernquist sphere and the substruc-

ture is modelled as a superposition of Hernquist spheres with a

fixed mass fraction fsub and a mass function dn/dm ∝ m−1.9. We

demonstrate that this reproduces the behaviour of v( f ) as seen in

simulations.

The behaviour of v( f ) and α(f) depends upon the parameters

fsub,mass function dn/dm of subhaloes, and mmin the minimum mass

of the subhalo. Since the mass function of subhaloes and their frac-

tion fsub depends upon the power spectrum of initial conditions and

on the cosmology adopted, the phase space structure of the haloes

might have an imprint of cosmology and initial conditions which

might be visible in the profile α(f).
Although the simple toy model that we propose here can explain

the basic properties of the volume distribution function there is still

some difference at the low f end. The flattening at low f end is more

pronounced in simulated haloes as compared to those of model

haloes, even after taking the truncation effect into account. Further

improvements on the model described include: the toy model as-

sumes that all subhaloes obey the same virial scaling relation while
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in simulation there should be slight dependence on the time of for-

mation of the subhalo. Moreover, the subhaloes may be tidally trun-

cated and stripped and so their density profile may be different from

that of a pure Hernquist sphere (Hayashi et al. 2003; Kazantzidis

et al. 2004). Furthermore, there might be a radial dependence on the

properties of subhaloes. A detailed model which takes into account

these effects might help explaining the phase-space properties more

accurately.

The issue of universality in the behaviour of the volume distribu-

tion function still deserves further investigation. For the four haloes

that we have analysed one of them had a nearly flat α(f) profile and

the others showed a characteristic dip at f ∼ 10 f Vir and a corre-

sponding rise which peaks at around f ∼ 103 f Vir. Larger samples

of haloes need to be investigated in order to put these results on a

sound statistical basis. The differences that are seen in the proper-

ties of haloes might be due to varying degree of virialization. The

second concern is regarding the role of numerical resolution on

the behaviour of the volume distribution function. In the model the

shape of the α(f) profile depends upon the minimum mass mmin of

the subhalo used to model the subhalo population. According to the

model α(f) has a minimum at around f /f Vir ∼ 10 and then it rises

to a peak at around f /f Vir ∼ 103 whose maximum value is deter-

mined by the logarithmic slope of the mass function and is given

be −(4 − γ ). Beyond this point increasing the resolution should

make the α(f) reach a plateau and then fall off once it reaches the

resolution limit of the simulation which occurs approximately at

f relax/f Vir ∼ 10−2 MVir/mp. This suggests that a proper convergence

study needs to be done to establish the universality in the phase-

space behaviour of the haloes. At higher resolution existence of a

behaviour different from the toy model suggested here would imply

that there are some physical processes at work which significantly

alter the properties of low mass subhaloes and drive the system to-

wards a universal behaviour, for example, the one with a constant

slope.

Our analysis here shows that the phase-space properties of the

haloes that are roughly consistent with equilibrium spherical models

with a given density profile in real space. A question of fundamental

importance is regarding the origin of the universal behaviour of these

density profiles as seen in simulations. A clue to which might be

found by studying as to how the system approaches equilibrium. The

evolution of the distribution function of collisionless particles is gov-

erned by the collisionless Boltzmann equation. Since the coarsely

grained distribution function of collisionless particles can be mea-

sured directly with EnBiD, this offers interesting opportunities to

study the processes of phase mixing and violent relaxation, which

help the system to reach equilibrium. It might be interesting in this

context to study the evolution of the volume distribution function of

the haloes with time.

Another interesting application of this method is to study the

distribution function of equilibrium systems, for example, a disc that

hierarchically grows inside a halo. One can study the distribution

function of these systems and this can in turn be used to construct

equilibrium models.

Finally, we would like to point out a potential improvement in the

code. If the density distribution in any dimension is linearly inde-

pendent of the other dimensions then this offers an opportunity to

further improve the density estimates by measuring the density dis-

tributions in different dimensions separately. The concept of mutual

information offers one such way to quantify this linear dependence

or independence. An algorithm can be developed which can exploit

this feature and improve the density estimates in situations where

the data offers such an opportunity.
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A P P E N D I X A : K E R N E L D E N S I T Y E S T I M AT E

For the so called KDE a kernel W is defined such that∫
W (x, h)dd x = 1. (A1)
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The density estimate of a discretely set of N particles at a point x is

given by

ρ(x) =
∑

i

mi W (xi − x, h) (A2)

while the probability density f̂ (x) is given by

f̂ (x) = 1

N

∑
i

W (xi − x, h). (A3)

The smoothing parameter h is chosen such that it encloses a

fixed number of neighbours Nsmooth. Assuming spherical symmetry

the kernel can be written in terms of a radial coordinate u only.

Some of the popular choices are Gaussian function and the B-splines

(Monaghan & Lattanzio 1985). The later is preferred due to its

compact support. A d-dimensional multivariate bandwidth spherical

kernel can be written as

W (x, h) = fd Wd (u)

�d
i=1hi

, (A4)

where

u =

√√√√ d∑
i=1

(
xi

hi

)2

(A5)

and the normalization fd is given by

fd = 1∫ 1

0
W (u)Sd ud−1du

, (A6)

where Sd being the surface of a unit hypersphere in d-dimensions

Vd its volume.

Sd = 2πd/2

�(d/2)
; Vd = Sd

d
. (A7)

Some popular kernels are given below and their normalizations con-

stants fd are listed in Table A1

WGaussian(u) = exp(−u2); fd = 1

πd/2
(A8)

WTop−Hat(u) =
{

1 0 � u � 1

0 otherwise
; fd = 1

Vd
(A9)

WSpline(u) =

⎧⎪⎨⎪⎩
1 − 6u2 + 6u3 0 � u � 0.5

2(1 − u)3 0.5 � u � 1

0 otherwise

(A10)

Table A1. Normalization constants for various dimensions

Dimension Normalization fd

d Spline Epanechnikov Bi-weight

1 1.3333 369 0.75 000 113 0.93 750 176

2 1.8189 136 0.63 661 975 0.95 492 964

3 2.5464 790 0.59 683 102 1.0444 543

4 3.6606 359 0.60 792 705 1.2158 542

5 5.4037 953 0.66 492 015 1.4960 706

6 8.1913 803 0.77 403 670 1.9350 925

7 12.748 839 0.95 242 788 2.6191 784

8 20.366 416 1.2319 173 3.6957 561

9 33.380 983 1.6674 189 5.4191 207

10 56.102 186 2.3527 875 8.2347 774

WEpanechikov(u) =
{

(1 − u2) 0 � u � 1

0 otherwise
(A11)

WBi−Weight(u) =
{

(1 − u2)2 0 � u � 1

0 otherwise.
(A12)

For kernels in product form

W (x, h) = �d
i=1 f1W (ui )

�d
i=1hi

, (A13)

where ui = xi/hi and f1 is the corresponding one-dimensional nor-

malization factor as given by equation (A6).

A1 Optimum choice of smoothing neighbours

If f̂ (x) is the estimated probability density of a field f(x) then its

mean square error (MSE) can be written in terms of its bias β(x)

and variance σ (x). Bias of an estimate is given by

β(x) = 〈 f̂ (x)〉 − f (x) (A14)

while its variance is

σ 2(x) = 〈[ f̂ (x) − 〈 f̂ (x)〉]2〉. (A15)

Hence mean square error is given by

MSE[ f̂ (x)] = 〈[ f̂ (x) − f (x)]2〉. (A16)

= 〈[ f̂ (x) − 〈 f̂ (x)〉 + 〈 f̂ (x)〉 − f (x)]2〉 (A17)

= σ 2(x) + β2(x) (A18)

To get accurate estimates both bias and variance should be small.

Using the fact that〈
N∑

i=1

A(x − xi )

〉
= N

∫
A(x − x ′) f (x ′) dx ′ (A19)

the bias and variance of an estimator can be calculated by using

equation (A3) and expanding f(x′) as a Taylor series about x. For

a d-dimensional multivariate kernel density estimate,the bias and

variance are given by

β(x) ≈ h2

2
T r [H f (x)]

∫
u2Wd (u)Sd ud−1 du, (A20)

where H f (x) = ∂2 f /∂xi ∂xj is the Hessian matrix of function f(x).

σ 2(x) ≈ 1

nhd
f (x)

∫
W 2

d (u)Sd ud−1 du (A21)

≈ f 2(x)
Vd

Nsmooth

∫
W 2

d (u)Sd ud−1 du (A22)

≈ f 2(x) Vd
Nsmooth

||Wd ||22 (A23)

||Wd ||22 being the d-dimensional L2 norm of kernel function

Wd (u).

Lowering h or equivalently lowering Nsmooth lowers β(x) but in-

creases σ (x). Ideally the optimum choice of Nsmooth is given by min-

imizing the MSE. The bias β, which depends on the second order

derivative of the field, is small for slowly varying fields, hence can

be ignored. Since σ (x) ∝ 1/
√

Nsmooth, the variance increases as

Nsmooth is decreased. The minimum value of Nsmooth that is needed

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 373, 1293–1307
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Figure A1. The variance of density estimates, as obtained by kernel smooth-

ing using 100 smoothing neighbours, as a function of number of dimensions.

The solid lines are calculated using equation (A23) while the points are the

σ extracted from a Poisson sampled data by applying kernel smoothing.

to attain a given value of σ (x) is the optimum choice of number of

neighbours. We define this lower limit on σ as 0.25f(x). In Fig. A1

σ is plotted as a function of number of dimensions d for Nsmooth =
100 (assuming f (x) = 1). The variance as obtained by applying

kernel smoothing on a Poisson sampled data with Nsmooth = 100

is also shown alongside. They are in agreement. The variance σ

does not increase exponentially with number of dimensions. Hence

the optimum number of neighbours also do not have to grow ex-

ponentially with the number of dimensions. This means that even

in higher dimensions kernel smoothing can be efficiently done em-

ploying a small number of neighbours. In higher dimensions the

efficiency of the nearest neighbour search algorithm is the main fac-

tor which determines the time required for KDE. It can also be seen

from Fig. A1 that for a fixed number of neighbours the spline kernel

gives maximum variance while the Epanechnikov kernel gives the

lowest variance. equation (A23) can be used to calculate the num-

ber smoothing neighbours Nsmooth required to achieve a given σ , for

any given kernel in any arbitrary dimension. For density estima-

tion with an Epanechnikov kernel in six dimensions, Nsmooth = 32

gives a variance of σ = 0.22 which is equivalent to a variance of

0.1 dex.

A2 Fraction of boundary particles

For a system of N particles uniformly distributed in a spherical

region in a d dimensional space the fraction of particles fb that lie

on the boundary increases sharply with the number of dimensions

d. If l is the mean interparticle separation then l = (Vd rd/N)1/d and

the fraction fb is given by

fb = (Sdr 2/l2)

(Vdr 3/l3)
= dl

r
= d

(
Vd

N

)1/d

For N = 106, the fraction fb is 0.05 and 0.79 for d = 3 and 6,

respectively.

A3 Anisotropic kernels

For planar structures which are not parallel to one of the coordinate

axis one needs to adopt an anisotropic kernel to get accurate results.

This is equivalent to a transformation with a rotation and a shear

which diagonalizes the covariance matrix and then normalizes the

eigenvalues (Shapiro et al. 1996). Let H be a diagonal matrix such

that Hii = hi and x′ = H−1 x. If C(x′) is the covariance matrix locally

at point x′ then the kernel is given by

W (x, h) = fd

|D|1/2|H | Wd (|D−1/2 E H−1x|), (A24)

where E is the eigenvalue matrix that diagonalizes C and D is

the corresponding diagonal eigenvalue matrix. To keep the num-

ber of smoothing neighbours roughly constant we normalize the

eigenvalue matrix, D → D/|D|1/d , this preserves the smoothing

volume. To identify the neighbours that contribute to the density

at x one now needs to select a spherical region with radius h′ =
h max (D1/2).

A4 Bias in spline kernels

Spline kernels have a bias in their estimated densities i.e. they sys-

tematically overestimate the density. This is not present for a regu-

larly distributed data like a lattice or a glass like configuration where

the interparticle separation is constant.2 This only occurs for a data

which has Poisson noise and whose density is measured at the lo-

cation of the data points. In some sense the bias is due to evaluation

of the density at the location of Poisson peaks in the density dis-

tribution. The smaller the distance from the centre the greater the

weight of the kernel. When the density is estimated at the location

of the particle the kernel assigns a very high weight to this particle

since its distance is zero. Below is shown a simple calculation which

demonstrates the bias in a spline kernel as compared to a top hat

kernel which is free from such bias.

f

ft

=
∑i=k

i=0
mWi

ρt
(A25)

= mWr=0 + ∑i=k
i=1

mWi

ρt
. (A26)

Assuming that the top hat kernel gives the correct density f t =
k/(Vd hd). Taking one particle out from the smoothing region should

roughly give a density of
∑i=k

i=1
mWi = m(k − 1)/Vd hd .

= mWr=0 + (k − 1)m/
(

Vd hd
)

km/
(

Vd hd
) (A27)

= 1 + fd Vd − 1

k
. (A28)

It can be seen from equation (A28) that the bias decreases when

the number of smoothing neighbours k is increased. This bias can

be removed by displacing the central particle having r = 0 to r =
hd/(1 + d), h being the radius of the smoothing sphere, and d the

dimensionality of the space. This corresponds to the mean value of

radius r of a homogeneous sphere in a d-dimensional space . This

correction should only be applied if the distribution of data is known

to be irregular.

In Fig. A2 kernel density estimates with and without bias

correction are shown for a system of N = 105 particles distributed

uniformly in a six-dimensional space with periodic boundaries. In

left panel the probability distribution P[log(f /f t)] is plotted with and

2 This bias does not affect the results in SPH simulations because the particles

are not distributed randomly but rather by the dynamics (Monaghan 1992).

The dynamics of the pressure forces results in a configuration which is

regular and with nearly constant interparticle separation.
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Figure A2. Kernel density estimates with and without bias correction.

are shown for a system of N = 105 particles distributed uniformly in a

six-dimensional space with periodic boundaries. Probability distribution

P[log(f /f t)] is plotted for spline kernel with smoothing neighbours n = 64

(left-hand panel) and Epanechnikov kernel with n = 32 (right-hand panel).

The mean 〈x〉 and dispersion σx of the best fit Gaussian distribution to x =
log(f /f t), is also shown alongside.

without bias correction, for kernel density estimate obtained using a

spline function and smoothing neighbours n = 64. In right panel the

probability distributions are plotted for kernel density estimates ob-

tained using an Epanechnikov function and smoothing neighbours

n = 32. The bias given by mean 〈x〉 of the best fit Gaussian dis-

tribution is also plotted alongside. According to equation (A28), in

a six-dimensional space for spline kernels with neighbours k = 64

the bias is 〈log(fsp/f t)〉 = 0.21 and for Epanechnikov kernel with

k = 32 the bias is 〈log(f Ep/f t)〉 = 0.04. These values are close to

those shown in Fig. A2 for uncorrected estimates. The Epanechnikov

kernel function has less bias than the spline kernel function. After

correction, for both the kernels, the bias is considerably reduced.
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