
Prof. Steven Flammia

Quantum Mechanics

Lecture 1

Course administration;
Review of Dirac notation and state space; 
Operators in quantum mechanics;
Observables, expected values, unitary dynamics.



Administration

❖ PHYS 3x34, advanced stream 3rd year Quantum Physics.

❖ Teaching assistant: Alistair Milne, amil1264@uni.sydney.edu.au

❖ Course website: www.physics.usyd.edu.au/~sflammia/Courses/QM2019/

❖ 4 Quizzes to be held during Lectures 5, 8, 11, 14.

❖ 2 Assignments, 1 Exam.

❖ Marks apportioned:  0.2 Q + 0.2 A + 0.6 E. 

mailto:amil1264@uni.sydney.edu.au
http://www.physics.usyd.edu.au/~sflammia/Courses/QM2019/


Why quantum physics?
❖ One of the most stunning intellectual achievements in human history. 

❖ It raises deep philosophical and conceptual questions:

❖ Determinism, causality, information, locality, even reality itself.

❖ Huge range of scientific and practical applicability:

❖ Neutron stars, elementary particles, fission and fusion, magnetism, lasers, 
transistors, superconductors, chemistry, fiber optics, quantum computers... 

❖ Despite a fearsome reputation, the principles of quantum physics are simple.



1927 Solvay conference

29 attendees, 17 Nobel laureates, 18 Nobel prizes.



Dirac notation

Kets = column vectors

Bras = row vectors

Recall that quantum mechanical systems are described by states.

Inner product

Can express any vector in an  orthonormal basis.

States must be normalized.

|ψ⟩, |ϕ⟩, | ↑ ⟩, | + ⟩,  etc.

⟨ψ | , ⟨ϕ | , ⟨ ↑ | , ⟨ + | ,  etc.

⟨ψ |ϕ⟩, ⟨ ↑ | + ⟩,  etc.
∑

j

|cj |
2 = ⟨ψ |ψ⟩ = 1

|ψ⟩ = ∑
j

cj |ej⟩

⟨ψ | = ∑
j

c*j ⟨ej |

⟨ej |ek⟩ = δjk

(cj complex)



Dirac notation
Example: spin-1/2 system

⟨ ↑ | ↑ ⟩ =
⟮ 1 0 ⟯ 1

0
= 1 ⟨ ↑ | ↓ ⟩ =

⟮ 1 0 ⟯ 0
1

= 0

⟨ ↑ | + ⟩ = 1

2

⟮ 1 0 ⟯ 1
1

= 1

2

⟨ ↓ | + ⟩ = 1

2

⟮ 0 1 ⟯ 1
1

= 1

2

| + ⟩ = 1

2
( | ↑ ⟩ + | ↓ ⟩) = 1

2

1
1

{ | ↑ ⟩ , | ↓ ⟩} | ↑ ⟩ =
1
0

, | ↓ ⟩ =
0
1

Basis: Orthonormal:

Other states can be expanded  
in the basis:

| + ⟩ = ⟨ ↑ | + ⟩ | ↑ ⟩ + ⟨ ↓ | + ⟩ | ↓ ⟩

⟨ ↓ | ↑ ⟩ =
⟮ 0 1 ⟯ 1

0
= 0 ⟨ ↓ | ↓ ⟩ =

⟮ 0 1 ⟯ 0
1

= 1

We conclude:



Finite-dimensional quantum systems
More generally, consider a system with a finite number of orthogonal states.

|ψ⟩ = ∑
n

cn |an⟩ ⟨ψ | = ∑
n

c*n ⟨an | ⟨an |am⟩ = δnm

⟨ψ |ψ⟩ = ∑
m

c*m⟨am |∑
n

cn |an⟩ = ∑
n,m

c*mcn⟨am |an⟩ = ∑
n,m

c*mcnδm,n = ∑
n

|cn |2 = 1

orthonormal basis

⟨am |ψ⟩ = ⟨am |∑
n

cn |an⟩ = ∑
n

cn⟨am |an⟩ = ∑
n

cnδm,n = cn

⇒ |ψ⟩ = ∑
n

⟨an |ψ⟩ |an⟩

normalization:

expansion coefficients:



Any expression of the form               is called an outer product. Outer products 
(and sums of them) are linear operators: they act linearly and map vectors to 
vectors.

Finite-dimensional quantum systems
More generally, consider a system with a finite number of orthogonal states.

|ψ⟩ = ∑
n

⟨an |ψ⟩ |an⟩ = ∑
n

|an⟩⟨an |ψ⟩ = (∑
n

|an⟩⟨an |) |ψ⟩

∑
n

|an⟩⟨an | = 1

We say that the basis forms a resolution of the identity. The equation itself is 
called a completeness relation. 

This holds for all      , so therefore we must have:|ψ⟩

|ψ⟩⟨ϕ |



Operators
Any complete orthonormal basis forms a resolution of the identity. 
Example: spin-1/2

Different basis choices allow us to expand states in different bases:

|ψ⟩ = ⟨ + |ψ⟩ | + ⟩ + ⟨ − |ψ⟩ | − ⟩  (x-basis)

|ψ⟩ = ⟨ ↑ |ψ⟩ | ↑ ⟩ + ⟨ ↓ |ψ⟩ | ↓ ⟩  (z-basis)

It also follows that: ⟨a |b⟩* = ⟨b |a⟩

| ↑ ⟩⟨ ↑ | + | ↓ ⟩⟨ ↓ | =
1
0

⟮ 1 0 ⟯
+

0
1

⟮ 0 1 ⟯
= (1 0

0 0) + (0 0
0 1) = (1 0

0 1) = 1

| + ⟩⟨ + | + | − ⟩⟨ − | = 1
2

1
1

⟮ 1 1 ⟯
+ 1

2
1
1

⟮ 1 1 ⟯
= 1

2 (1 1
1 1)+ 1

2 ( 1 −1
−1 1 ) = (1 0

0 1) = 1



Operators
In general, any linear operator of commensurate dimension can act on a state.  
Operators can be thought of as acting from the left or from the right.

The Hermitian conjugate (complex conjugate + transpose) relates the two actions.  
Operator ordering follows the conventions of matrix multiplication.

Operators do not commute! 

AB ≠ BA  (in general)

(AB)† = B†A† BA |ψ⟩ = B (A |ψ⟩) ⟨ψ |A†B† = (⟨ψ |A†) B†

A |ψ⟩ = |ϕ⟩  (from the left)  ⇔ ⟨ψ |A† = ⟨ϕ |  (from the right) 



Eigenstates and eigenvalues

Eigenvalues and eigenstates (or eigenvectors, same thing) are solutions to:

A |an⟩ = an |an⟩

The length of the eigenvector is not specified by this equation, but if it is nonzero,  
then the length can be chosen to be 1.

A huge fraction of practical quantum calculations involves finding eigenstates  
and eigenvalues.

associated  
eigenvalue

eigenvector



Observables and expected values

Observables are operators that are also self-adjoint (or just Hermitian):

They have a complete set of orthonormal eigenvectors and real eigenvalues.

We are often interested in computing expected values of operators  
(usually for observables, but it can be done more generally).

A = A†

A = ∑
n

an |an⟩⟨an | ⇒ A |an⟩ = an |an⟩ = A† |an⟩ = (⟨an |A)† = (⟨an |an)† = a*n |an⟩ .

⇒ an = a*n

⟨ψ |A |ψ⟩ = ∑
m,n

⟨am |c*mcnA |an⟩ = ∑
m,n

⟨am |c*mcnan |an⟩

= ∑
m,n

c*mcnan⟨am |an⟩ = ∑
m,n

c*mcnanδmn = ∑
n

|cn |2 an



The Born rule and unitary dynamics

Unitary matrices are the inverse of their adjoint:

The probability of an outcome of a measurement is given by the Born rule.

Unitary dynamics therefore preserves total probability:

∑
n

pn(U) = ∑
n

|⟨an |U |ψ⟩ |2 = ∑
n

⟨an |U |ψ⟩* ⟨an |U |ψ⟩ = ∑
n

⟨ψ |U† |an⟩⟨an |U |ψ⟩

= ⟨ψ |U† (∑
n

|an⟩⟨an |) U |ψ⟩ = ⟨ψ |U†1U |ψ⟩ = ⟨ψ |U†U |ψ⟩ = ⟨ψ |ψ⟩ = 1.

p↑ = |⟨ ↑ |ψ⟩ |2

p↓ = |⟨ ↓ |ψ⟩ |2

pn = |⟨an |ψ⟩ |2More generally:
for a measurement in the basis  {an}.

U† = U−1

⇒ U†U = UU† = 1.
by definition,

Example: spin-1/2


