Prof. Steven Flammia

(Quantum Mechanics

Lecture 2

—

[ime evolution and the Schrodinger equation;
The Hamiltonian as the generator of time translations;
Wave functions in infinite-dimensional Hilbert spaces;

Position and Momentum Operators.




Commuting operators

Consider the case of two nondegenerate operators A and B AB = BA
Suppose they are Hermitian and that they commute. Ao h B

Ala)=ala) = A (B\a)) = BA|a) =a (B\a)) .
B | a) is also an eigenstate, which means that: B|a) = b|a) or the eigenstate is not unique.

More generally, commuting Hermitian operators share a common eigenbasis.
(The proof can be done by generalizing the above argument.)

To track commutativity (or lack thereof), introduce the commutator:

[A, B] -— AB — BA Many nice algebraic identities...
[A,B] = — [B, A] LB el G| B €] 'A.BC] = [A.BIC + B[A. C]

[A,[B,C]] + [B,[C,A]l +[C,[A,B]] = 0 ... and more.



Unitary time evolution

Let’s look at the unitary operator that translates a state in time:

U0 |y(0)) = |y(D)) (D) | w(d)) = 1
Recall, it must be unitary to conserve probability. (w(0) | U TUE) | w(0)) = 1

Rather than study the most general such operator, Taylor expand for small time:

[/ (dt) == i Hdr Here H is an operator, dt is a small time,

o : tice H h its of .
7) and the coefficients are a convention. Notice as Units or energy

Unitarity at first order in dt implies:

1 = U(dy)"U(dr) = (1 i %HUt) (1 = %Hdt) =1+ %(H* —H)dr = H=H"

H is self-adjoint, so it has a complete orthonormal eigenbasis and real eigenvalues.



T'he Schrodinger equation

What about at large times? We can expand again, but around ¢.

U(t+ dr) = (1 — %Hdt) U(t) d
ihd_tU(t) = H L)

Ut + dt) — U(r) = (—%H) U(t) dt

Schrédinger equation,
operator form

When H is time-independent, the general solution is:
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T'he Schrodinger equation

Applying both sides to some initial state |¥(0)), we find

Schrédinger equation, Schrédinger equation,
state vector form operator form

[s this still unitary for all ¢, not just dt? Assuming H is independent of t:

U U(t) = otiH thha—iHtlh _ +iHtlhg—iHtlh _ o[+i(H—-H)t/h] _

Ut = U(-9) U(H)U(s) = U(t + ) U0) = 1



T'he Hamiltonian operator

Let’s continue assuming that H is independent of ¢.

Recall that H has units of energy:. [H] = [A]/[df] = Energy

[t commutes with U(t): |H, U(t)| = |H, e_th/h] =4

[t is self-adjoint, so it is an observable with real eigenvalues. H=H

What is the expected value of H?

Expected value is conserved.

(w(®) | H|w(@®)) = (w(0) | U@ HU@) | w(0)) = (w(0)| U®)'U®)H |w(0)) = (w(0) | H|w(0)) = (E)

We therefore define H to be the Hamiltonian or energy operator.



T'he Hamiltonian operator

What are the eigenstates of H? The energy eigenstates:

H|E) = E|| E) H= ) E|E3(E]
7

The energy eigenstates are “stationary” with respect to time:

—iHt/h _ ~—1iEth _ . —lw;
U(t)‘E}>=€lt‘E}>—€lJt ‘E})—@la)ft‘Ej>
overall phase

Superpositions of energy eigenstates have non-trivial dynamics.
Example:




Time dependence of expected values

What about time dependence of expected values more generally?

d d 0 d
E(xﬁ\) = (Eﬁ/f(t) | ) Aly(0) + (w®)| (EA) [ w(0)) + (w(®) | A (Eh/f(t)))

e i = OA
U;e e = %Q//(z) | HA | w(1)) + 7<l/f(t) |AH | w(0)) + (w(?)| = |y (1))
ihd—t |y (1)) = H|w(0))

° 0A
= —(w(0)| [H AT [w(0) + (y ()| — (1)

Operators A that are independent of time are conserved iff they commute with H.



Position basis

Our derivation of the Schrédinger equation was completely general. But let’s
focus on a special case more challenging than spin degrees of freedom: position.

Unlike spin, which takes a finite set of values, position is a continuous variable.

In analogy with spin, let’s consider a 1D line and define a position operator:
tix) = xly

We should be able to expand any state in the position basis. Because position is a
continuous variable, the resolution of the identity takes an integral form:

j:\xﬂx\dx:l =y :J b Ji, m

o0

— OO0



Real-space wave functions

This suggests defining the wave function w(x):

i =J s L

What is the Born rule probability for finding the particle at x?

W No! Position is continuous, so we should define a probability density.

What is the Born rule probability for finding the particle between x and x+dx?

| (x| yw) \zdx Yes! More enerally :
e v J [ (xly) | dx

This makes mathematical sense.



Position eigenstates and the Dirac delta function

Are the eigenstates of the position operator valid wave functions?

o0

) = | xp) \xo>=J \x><x\xo>dx=J e b

— Q0

The Dirac delta function: 0
J J(x)o(x — x())dx =f (Xp) For any smooth f(x).

Actually a “distribution”, not a function.

See Appendix C of Townsend. If f(x) = 1, then:

Clearly we must have:

6(x —xy) =0 forx # x, J o(x — xp)dx =1

The Dirac delta function is not a normalizable wave function, so position
eigenstates are not physically realizable.



Expected values and overlaps

o0 o0

x| x)(x | y)dx = [ xy(x)*y(x)dx = [ x|y (x) |*dx

— Q0

<x>=<www>=[ <w\fc|x><x|w>dx=[

— Q0

(P ly) = J (@ | x){x|y)dx = [ p(x)*yp(x)dx

The trick is always to insert a resolution of the identity:.



