Prof. Steven Flammia

(Quantum Mechanics

Lecture 6

AM matrices: spin 1/2 example;
Reduction of the two-body problem;
Angular momentum revisited,;
Commutation relations;
Simultaneous eigenstates.




A quick recap

Angular momentum eigenstates satisty:
J2\jsm) = j(G + DA*|j, m) J |j,m) = mh|j,m)
The eigenvalues are constrained:

Allowed values forjare: j =0, %, & %, D

Zivttotalstatess m=11 -1 -2 — -7
The matrix elements of the raising and lowering operators are:

(o' || jom) = \FG + D) — m(n = Dhb,y ey
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FExample: spin 1/2

Let’s derive the spin operators for a spin-1/2 system using these formulas.
Recall: (j,m’'|J.|j,m) =+/j(j + 1) —m(m = 1)Ad,, ..
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FExample: spin 1/2

Let’s derive the spin operators for a spin-1/2 system using these formulas.

Recall: <%,m’ il m> \/——m(m"' Dno,,

We also have:  J_ %, %)

1 1
(- and J_| > 2> = () therefore:

|
=t

0 0

= [O <3’3 J+| 2 2>] <%%| | > \/__ . 1)n

therefore: J_|_ =N [8 (1)] and = Ji =N [(1) 8]



FExample: spin 1/2

Let’s derive the spin operators for a spin-1/2 system using these formulas.

Recall: Ji = Jx = l']y

sl =0 ] - F)=il

20 D] _n |0 —1 = ol )
]x_Ell O] lJy_E[_l O] = Jy—zll O] JZ_E[JX’J)’]_E[() _1]

These formulas exactly recover the Pauli spin matrices in the z-basis!

Also notice that total AM is:

%%> TN Y %_%> oy m=\/1 (3+1)n=
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T'wo-body Hamiltonian with interaction

Consider a Hamiltonian with two interacting particles that are otherwise free:

Position ketin3D:  |I) = |x,y,2)

il — —+ e V( ‘ Ei=1, ‘ ) Total state space: ‘ Iy, I’2> s ‘ I’1> 034 ‘ I'2>
Total linear momentum: f’% - ﬁ%x =1 ﬁ%y 2z ﬁ %Z

The potential energy depends only on the distance between the particles.
Transform to center-of-mass and relative coordinates:

A v, R K 8
P:=p, 471 =m; +m, =P L1,
P T P2 M M
Total linear momentum. Total mass. Center-of-mass position
- i e , i e g
P— 0 e e o
M M my + 1y

Relative linear momentum. Reduced mass. Relative position.



Reduced Hamiltonian

Rewrite the Hamiltonian in the new coordinates:

I’}Z f)z
H— = P Vil
2M  2u

Energy eigenstates can be labeled by total momentum P:
[IA), r| = [131 55 f’za i\'1 = f'z] =0
We can always choose a co-moving frame so that:

P=0 => H=—+ V(| r ) We have reduced the problem to a single-particle problem.



Angular momentum operator revisited

The new Hamiltonian is radially symmetric, so we expect AM conservation.

2
He ' o viED

2
To show this, consider an AM operator L, and it’s associated rotation operator:

R(dge,) | x,y,z) = |x —yd¢,y + xd¢, z)

Z

= i
. = (1 = %px(—ydcb)) (1 — %py(xdcb)) | X, ¥,2)
. i T DN : -
Spherical coordinates = ( L= %(XP v YP x)d§b ) ‘ Xy Y, Z> To first order in d¢.

l g —
R(d¢ez) =1 — %de¢ =1-= %(xpy T ypx)d¢ = LZ = xpy T

Obtain L, and L, by cyclic symmetry.



Commutation relations

Repeating the argument with cyclic symmetry, we conclude that:
P =rxp
This implies commutation relations with position and momentum:

[Lzaﬁx] = [iﬁy S j}ﬁxaﬁx] [Lzaﬁy] = [)%ﬁy e j\}ﬁxaﬁy] [szﬁz] = [)%ﬁy = j}ﬁx’ﬁz]

— [fcﬁy, p.] = —[yp., ﬁy] =0
= [% PP, = — [, b, 1p;
e lhﬁy =2 = lhﬁx

[LZ, Az] = [Lzaﬁ)zc +ﬁ§ +ﬁ§]
= ﬁx[Lzaﬁx] = [Lz’ﬁx]ﬁx +ﬁy[Lz’ﬁy] T [Lz’ﬁ)’]ﬁy = [Lz’ﬁg]
= 2ihp,p, — 2ihp.p, =0



Commutation relations

Repeating the argument with cyclic symmetry, we conclude that:
P =rxp

This implies commutation relations with position and momentum:

[L,,x] = [xp, — yD,, X] [L,,y] = [Xpy, — ¥P,» V] [L,, 2] = [Xpy, — YD, Z]
= _y[ﬁxai] :)%[ﬁyaj\/] =0
= ihy = — Ak

fiie —imea o
= F[L,, £1+ [L,, $1% + 1L, 31 + [L,, 319 + [L,, £°]
= 2ih%Y — 2ihkH = 0

Note: [f'Z, ‘IA'H = 0



The Hamiltonian conserves AM

We have established that the Hamiltonian conserves angular momentum:

e a0 = L0

[L%,p°] =[L,#]1=0 = [L°H]=0

There is nothing special about the z direction... the same is true for x and y!
But L, does not commute with Ly or L,, so we can only choose one simultaneous symmetry.



Simultancous eigenstates

The rotational symmetry establishes the following commutations relations:

2
H=§—ﬂ+V(\f'\) L =1 ]l e

Therefore, a simultaneous eigenbasis exists for all three of H, L2, L.:
H|\E,I,m)=E|E, I m)

L°|E,I,m) = I(l+ DA*|E, 1, m)
L |E,[,m)=mh|E, [, m)

Next lecture, we will see how this allows us to decouple the angular and radial parts of the
wave function and solve the Schrédinger equation separately for each part.



