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Degenerate perturbation theory;
Example: the Stark effect.




A quick recap
Suppose a complicated Hamiltonian splits into two pieces,
And suppose we can solve the simple part:
Hyl¢,”) = B, | 4,”)
Assume that the full system can be solved as a power series:
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The first few terms are given by:
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Degeneracy

We run into problems with this prescription when there is degeneracy:
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The 1st order eigenstate corrections (and 2nd order energy corrections, too) are
singular in this case!
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A simple example will illustrate the reason for the singularity and suggest a
possible resolution to the problem.



Degeneracy

Consider a two-state system with a trivial Hamiltonian and eigenstates:
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Now add a small perturbation and solve:
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Perturbation theory gives the wrong answer, even at 1st order!

E1(1)=<T‘H1|T>=O E2(1)=<l(‘H1‘l>=() wrong answer!



Degeneracy

Problem: Our initial choice of basis “didn’t know” about the new basis after the
perturbation, leading to large changes in the state for small perturbations.

Solution: In a degenerate subspace there is no preferred basis, so we should
make a basis choice that is sensitive to how the symmetry breaks.

To have a hope of a solution, we should try a basis such that:

Want this <¢l§0) | H i | ¢,§O)> Try to choose a basis such that for distinct states:
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This is the same as choosing unperturbed basis states so that the
perturbing Hamiltonian is diagonal in the degenerate subspace.



Diagonalizing in a degenerate subspace

Consider a complete set of states with a given degenerate energy E:

To ease notation, introduce:
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A resolution of the identity within the degenerate subspace is given by:

Projector onto degenerate subspace: ;
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Let’s focus on just the 1st order energy equations for a general state in 1f:
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Diagonalizing in a degenerate subspace

Apply the projector 1 on the left:
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The 1st-order energy shifts are eigenvalues of H; in the degenerate subspace,
and the 1st-order eigenstates are the eigenstates of H;.



Stark effect

Electric dipole coupling:

Suppose E-field points along z axis
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Non-degenerate energy for n =1 only.
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Ist order energy corrections to the ground state:
EV =(1,0,01H;|1,0,0) = ¢|E|(1,0,0|2]1,0,0) = 0 by symmetry

2nd order energy corrections to the ground state:
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Stark effect

Need degenerate perturbation theory for n=2 subspace; it contains 4 states:

H =e¢|E|zZ v € {12,0,0),12,1,0),12,1,1),]2,1, — 1)}
We need to write out all 16 elements of the 4 x 4 matrix:
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Fortunately, symmetry helps us. Many terms vanish because L. is conserved:
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Stark effect

Therefore: .
. Hy, 0} ¢
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The diagonal elements also vanish by symmetry:
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but it also changes sign, so it must vanish.
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Stark effect

Therefore: e
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The remaining element is nonzero:
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Stark effect

The eigenvalues and eigenvectors tell us the first order corrections:
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