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Degenerate perturbation theory;
Example: the Stark effect.



A quick recap
Suppose a complicated Hamiltonian splits into two pieces, 

The first few terms are given by:
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And suppose we can solve the simple part:

Assume that the full system can be solved as a power series:



Degeneracy
We run into problems with this prescription when there is degeneracy: 

A simple example will illustrate the reason for the singularity and suggest a 
possible resolution to the problem.
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The 1st order eigenstate corrections (and 2nd order energy corrections, too) are 
singular in this case!



Degeneracy
Consider a two-state system with a trivial Hamiltonian and eigenstates:

Now add a small perturbation and solve:
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Perturbation theory gives the wrong answer, even at 1st order!
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This should be exact at order λ1. 



Degeneracy
Problem: Our initial choice of basis “didn’t know” about the new basis after the 
perturbation, leading to large changes in the state for small perturbations.   
 
Solution: In a degenerate subspace there is no preferred basis, so we should 
make a basis choice that is sensitive to how the symmetry breaks. 

To have a hope of a solution, we should try a basis such that:

This is the same as choosing unperturbed basis states so that the 
perturbing Hamiltonian is diagonal in the degenerate subspace.
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Want this 
to be finite:

Try to choose a basis such that for distinct states:



Diagonalizing in a degenerate subspace
Consider a complete set of states with a given degenerate energy E:

H0 |χj⟩ = E |χj⟩j = 1,…, N|χj⟩ := |ϕ(0)
E , j⟩

To ease notation, introduce:

N

∑
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A resolution of the identity within the degenerate subspace is given by:
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H0 |ϕ(1)⟩ + H1 |ψE⟩ = E(0) |ϕ(1)⟩ + E(1) |ψE⟩

Let’s focus on just the 1st order energy equations for a general state in 1E:

matrix element (H1)kj
Projector onto degenerate subspace:
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Diagonalizing in a degenerate subspace
Apply the projector 1E on the left:
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The 1st-order energy shifts are eigenvalues of H1 in the degenerate subspace, 
and the 1st-order eigenstates are the eigenstates of H1.

1EH11E |ψE⟩ = E(1) |ψE⟩



Stark effect
Electric dipole coupling:
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1st order energy corrections to the ground state:

2nd order energy corrections to the ground state:

Non-degenerate energy for n = 1 only.

Suppose E-field points along z axis



Stark effect
Need degenerate perturbation theory for n=2 subspace; it contains 4 states:

H1 = e |E | ̂z |χj⟩ ∈ {|2,0,0⟩, |2,1,0⟩, |2,1,1⟩, |2,1, − 1⟩}

m′�ℏ⟨n, l′�, m′�| ̂z |n, l, m⟩ = ⟨n, l′�, m′�|Lz ̂z |n, l, m⟩
= ⟨n, l′�, m′�| ̂zLz |n, l, m⟩
= mℏ⟨n, l′�, m′�| ̂z |n, l, m⟩

We need to write out all 16 elements of the 4 x 4 matrix:

Fortunately, symmetry helps us. Many terms vanish because Lz is conserved:
[Lz, H1] ∝ [Lz, ̂z] = 0

(H1)kj = ⟨χk |H1 |χj⟩

⇒ m = m′�



Stark effect

H11 H12 0 0
H21 H22 0 0
0 0 H33 0
0 0 0 H44
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m =    0           0          1           -1

m’ =     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       0

      1

     -1

|Ym
l (θ, ϕ) |2 vs. {l, ± m}

Therefore:

The diagonal elements also vanish by symmetry:

⟨n, l, m | ̂z |n, l, m⟩ = f(r)∫ dΩ cos θ |Ym
l (θ, ϕ) |2

∝ ∫
π

0
dθ sin θ cos θ |Ym

l (θ, ϕ) |2

= 0

̂z → r cos θ

θ ↔ π − θ
The integral is invariant under

but it also changes sign, so it must vanish.



Stark effect
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Therefore:

The remaining element is nonzero:
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⟶



Stark effect
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The eigenvalues and eigenvectors tell us the first order corrections:

By inspection, we find:

1

2
( |2,0,0⟩ ± |2,1,0⟩) ∓3e |E |a0

|2,1, ± 1⟩ 0

Eigenvector:
Corresponding 
eigenvalue:

Stark shift energy level diagram:

E2


