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Identical particles;
Spin-statistics theorem;
Helium atom;
Exchange interaction.



A quick recap
Perturbation theory can be used to estimate energies and eigenstates when the 
complete Hamiltonian is too complicated to solve explicitly.

HSO ∝ S ⋅ L

In some cases, the “old” quantum numbers for AM become “bad” and must be 
replaced by new quantum numbers for total AM. The Clebsch-Gordan 
coefficients tell us how to express the new eigenstates in terms of the old.

Examples: HStark ∝ e |E |HHF ∝ S ⋅ I

|J M⟩ =
j1

∑
m1=−j1

j2

∑
m2=−j2

Cj1 j2 J
m1 m2 M | j1 m1 j2 m2⟩

Spin-orbit coupling Hyperfine structure Stark shift



Identical particles
Elementary particles of the same type are all exactly identical.

When  the  wave  functions  of  identical  particles  overlap,  they  become 
indistinguishable.  Contrast  this  with  classical  mechanics,  where  particles 
always occupy distinct space and can always (in principle) be distinguished.

Classical Quantum

This indistinguishability has important physical consequences.



Identical particles
Consider an experiment with two indistinguishable particles where we 
measure position in small regions dr. We must have:

|ψ(r, r′�) |2 = |ψ(r′�, r) |2 ⇒ ψ(r, r′�) = eiϕψ(r′�, r)

Introduce the exchange operator (also known as swap):

P1,2 ψ(r, r′ �) = ψ(r′�, r) P2
1,2 = 1 ⇒ e2iϕ = 1 ⇒ eiϕ = ± 1

Thus, indistinguishable particles (invariant under exchange) come in two types:

ψ(r, r′�) = + ψ(r′�, r)

ψ(r, r′�) = − ψ(r′�, r)

Bosons

Fermions



Bosons, Fermions, and the spin-statistics theorem
Bosons have integer spin, and 
fermions have half-integer spin.

In relativistic quantum mechanics, 
this is a provable statement known 
as the spin-statistics theorem.

The exchange phases are internally 
consistent under composition of 
particles:

B + B = B F + F = BB + F = F



Symmetrizing wave functions
When quantum statistics are important, we need to explicitly enforce the 
exchange symmetry in our wave functions.

ψ1(r1)ψ2(r2)…ψN(rN)

The Pauli exclusion principle: this vanishes whenever ψi = ψj.

Consider non-interacting fermions in a spin-independent potential:

Hi =
p̂2

i

2m
+ V( ̂ri) , H =

N

∑
i=1

Hi
Single-particle eigenstates of the Schrödinger 
equation do not have the required symmetry!

ψ(r1, r2, r3) =
1

3!

ψ1(r1) ψ1(r2) ψ1(r3)
ψ2(r1) ψ2(r2) ψ2(r3)
ψ3(r1) ψ3(r2) ψ3(r3)

=
1

N!
det({ψi(rj)})

We can make this anti-symmetric with the use of the Slater determinant:
Ex: N = 3

For bosons, the determinant 
gets replaced with the 
“permanent”, the same sum 
but with all + signs instead 
of alternating signs.



Symmetrizing wave functions
If the Hamiltonian is spin-independent and non-interacting, the wave function 
is a product of spatial and spin degrees of freedom.

|ψtot(r, s, r′�, s′�)⟩ = |ϕ(r, r′�)⟩ |χ(s, s′�)⟩

{ | ↑ ↑ ⟩, 1

2
( | ↑ ↓ ⟩ + | ↓ ↑ ⟩), | ↓ ↓ ⟩, 1

2
( | ↑ ↓ ⟩ − | ↓ ↑ ⟩)}

Triplet - symmetric Singlet - antisymmetric

Spatial Spin

{ |1,1⟩, |1,0⟩, |1, − 1⟩, |0,0⟩} =

Example: 2 particles

Symmetrization of spin has different consequences for bosons and fermions. 

spin-1/2 spin states:

Symmetric product state (unique).

{ |0,0⟩}

spin-0 spin states:

Example: 2 particles



Symmetrizing wave functions
The total wave function must have appropriate symmetry.
Example: 2 particles

1

2
( |ϕ1(r)⟩ |ϕ1(r′�)⟩ + |ϕ1(r′ �)⟩ |ϕ1(r)⟩) |0,0⟩Ground 

state:

spin-0 Bosons: spin-1/2 Fermions:

|ϕn(r)⟩ = nth excited spatial 
state at position r.

In the non-interacting case, we can symmetrize space and spin separately.

Excited 
states:

1

2
( |ϕ1(r)⟩ |ϕ1(r′�)⟩ + |ϕ1(r′�)⟩ |ϕ1(r)⟩) |0,0⟩

1

2
( |ϕ1(r)⟩ |ϕ2(r′�)⟩ + |ϕ1(r′ �)⟩ |ϕ2(r)⟩) |0,0⟩

anti-sym.

Fermionic excited states are four-fold degenerate, other states are unique.

1

2
( |ϕ1(r)⟩ |ϕ2(r′�)⟩ + |ϕ1(r′�)⟩ |ϕ2(r)⟩) |0,0⟩

1

2
( |ϕ1(r)⟩ |ϕ2(r′�)⟩ − |ϕ1(r′�)⟩ |ϕ2(r)⟩) |1,m⟩



Particle statistics
Particle symmetry leads to different degeneracies, and eventually to different 
notions of particle statistics.

These differences eventually lead to 
Bose-Einstein statistics for bosons and 
to Fermi-Dirac statistics for fermions. 



Helium atom
The Hamiltonian for Helium, ignoring spin-orbit coupling and other spin-
dependent effects is:

It is natural to try perturbation theory starting with H1 + H2 eigenstates.

Hi =
p̂2

i

2m
−

Ze2

| ̂ri |
, V =

e2

| ̂r1 − ̂r2 |
, H = H1 + H2 + V , (Z = 2) .

|ψ(0)
1 ⟩ = |1,0,0⟩ |1,0,0⟩ |0,0⟩ ⟶ ⟨r, r′�|ψ(0)

1 ⟩ = 1

2
(ψ1,0,0(r)ψ1,0,0(r′�) + ψ1,0,0(r′�)ψ1,0,0(r)) |0,0⟩

Ground state:

First order energy correction:

⟨ψ(0)
1 |V |ψ(0)

1 ⟩ = (some nasty integral)   =   +34 eV

Total 1st order energy:

(Z = 2)3 x (-13.6 eV) + 34 eV = - 74.8 eV

From experiment: -79.0 eV



Helium atom
There are several excited states with the requisite symmetry:

The explicit energy integrals in position space only depend on the spatial part:

E(1) = ∬ drdr′�|⟨1,0,0 |r⟩ |2 |⟨2,l, m |r′�⟩ |2 e2

|r − r′�|

±∬ drdr′�⟨1,0,0 |r⟩⟨2,l, m |r′�⟩
e2

|r − r′�|
⟨2,l, m |r⟩⟨1,0,0 |r′�⟩

=: J ± K

|ψ(0)
2 ⟩ =

1

2
( |ψ1,0,0(r)⟩ |ψ2,l,m(r′�)⟩ + |ψ1,0,0(r′�)⟩ |ψ2,l,m(r)⟩) |0,0⟩

1

2
( |ψ1,0,0(r)⟩ |ψ2,l,m(r′�)⟩ − |ψ1,0,0(r′�)⟩ |ψ2,l,m(r)⟩) |1,ms⟩

In fact, K > 0.



Energy shift in He
The energy shift depends on l and the symmetry of the spatial wave function

Image: http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/helium.html

E(1)(l = 0) = 11.4eV ± 1.2eV E(1)(l = 1) = 13.2eV ± 0.9eV

Spin-dependent energy shifts have appeared from spin-
free Hamiltonian interactions! 

This effect is called the exchange interaction.

Antisymmetric wave functions tend to avoid overlapping 
in space, so they are farther apart and have less Coulomb 
repulsion.  
 
Symmetric wave functions clump together and therefore 
have larger Coulomb repulsion. 

(singlet) (triplet)


