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A quick recap

We derived the quantum Hamiltonian for a classical EM field: (Coulomb gauge)
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And, together with gauge invariance, we derived two phenomena:
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Time-dependent perturbation theory

[f we are interested in time dynamics of a system, we need more information
from perturbation theory than what the time-independent case gives.

We allow our perturbing Hamiltonian to potentially depend explicitly on time
and we make the following ansatz.
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Using the Schrédinger equation

The Schrodinger equation tells us how the c,(t) evolve with time.
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Perturbation series

We have derived a set of coupled differential equations for determining the
evolution equations of the new amplitudes.
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We now expand c,(t) as a perturbation series:

H, - AH, ¢, =c + AcD + 1%¢D + ...
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As with time-independent perturbation theory, we now equate terms at each
order in A to find self-consistent equations for the perturbative corrections.



Oth order and immital conditions

Collecting terms at Oth order, we find
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Oth order equation: C(O) = O
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We need boundary conditions, so assume we initialize as follows.

Assume we start in an unperturbed eigenstate:
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I st order condiuons

Collecting terms at 1st order, we find
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This can be integrated to obtain:
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Schrodinger picture

We have been accustom to thinking of the state vector evolving in time:
| WS(t» = S(t) | l//S(O)> U S(t) — €Xp<—iH t/ h) (if H is time-independent.)

We will call this the “Schrédinger picture” and label states and operators
considered in this picture by a subscript S.

In the Schrodinger picture, time-evolution obeys:
ihUy(t) = HU(?)

and expectation values (of time-independent operators) obey:
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Heisenberg picture

In contrast to the Schrodinger picture, in the Heisenberg picture the operators
evolve and the states remain fixed.
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Heisenberg operator time evolution obeys:
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Interaction (Dirac) picture

The Schrodinger and Heisenberg pictures are “active” or respectively “passive”
views of quantum evolution. The interaction picture combines features of both
in a convenient way for time-dependent perturbation theory. Define:
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Time evolution in the interaction picture proceeds as:
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Operator evolution in the interaction picture

We thus have:
[y (D) = e | yrg()) if | y(0)) = e H e TH [ y(n))

Evolution of expected values of operators proceeds as:
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Evolution of expected values ot operators proceeds as:
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This suggests defining:
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Unitary evolution operator

In the interaction picture, Hr depends on time, complicating time evolution.
O, = ~[Hy, 0}] Home v e 00 in [y (1)) = Hy|yy(0))

We can integrate the evolution equation as follows:
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To get a perturbative expression, we can iterate this:
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Amplitude evolution

We can now derive the evolution equations for the c,(t) amplitudes.
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Using the perturbative expansion for Uj(t), we find:

.t
l
(EQ | Uf0) | E®) = (EX| E©) - %J dt' (EQ | H(t) | E®) + ..
0

' - (EO_EO ,
—5ﬁ—%J grev RO T
0

This looks familiar! We can therefore see:
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