Guest lecture by Dr. Arne Grimsmo

(Quantum Mechanics

Lecture 18

Harmonic oscillator redux:
Coherent states;
Quantum phase space.




Simple harmonic oscillator

The simple harmonic oscillator is one of the most important models in all of
physics. Let’s give a lightning review of the basics.
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To solve the Hamiltonian, we introduce creation and annihilation operators:
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Inverting these equations for position and momentum, we find:
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Simple harmonic oscillator

In terms of d', d or the number operator N, the Hamiltonian becomes
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The eigenstates and energies are given in terms of the number states:
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The creation and annihilation operators act on the number states as follows:
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They are sometimes called raising and lowering operators because of this.



Simple harmonic oscillator

The number states form a complete  (g) (b)
orthonormal basis: E.y E. 02
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Number state uncertainty

The uncertainty in position or momentum is easy to compute with a',a:
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We have:
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Similarly, we have:
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Uncertainty and the large-7 limit

A similar calculation for p shows that
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As we expect from Heisenberg, even in the ground state there is uncertainty:
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Thus, the number states cannot directly correspond to a classical limit with a well-defined

mass on a spring. Perhaps we should have expected this, since they are eigenstates and have
no dynamics. But it begs the question:

What are the “most classical” states of the harmonic oscillator?



Coherent states

The coherent states are defined as eigenstates of the annihilation operator:

Since the annihilation operator is not self-adjoint,
the eigenvalue can be, and generally is, complex.
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In the number basis, they look like:
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The eigenvalue property follows easily:
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Coherent state time evolution

The coherent states are normalized, but not orthogonal:
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However, they are nearly orthogonal when a or g have large magnitude.

Coherent states evolve in time as follows: |a(f)) = p ol | ez )
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Coherent states remain coherent states under time evolution! Only a changes.



Coherent state expected values

The expected values of position and momentum change with time for a
coherent state as they would for a classical mass on a spring.
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Coherent states have minimal uncertainty

Coherent states have the minimal uncertainty allowed by quantum mechanics.
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Minimal uncertainty for all @ and #!



Classical vs. quantum phase space

The coherent states suggest the following analogy with classical mechanics.

In classical phase space, point particles In quantum phase space, a distribution
evolve along trajectories labeled by evolves along trajectories labeled by
coordinates (x(t),p(t)). expected values, ({(X(1)), (p(D)).
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Simple harmonic oscillator Coherent state distribution evolving as
trajectory in classical phase space. a trajectory in “quantum phase space”.



The Wigner function (non-examinable)

One way to make sense of quantum phase space is with the Wigner function.
Starting from a wave function 1), we transform it as follows:
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This formula can be inverted to yield
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Thus, the Wigner function is a faithful representation of a quantum state. It allows
us to visualize states and dynamics in phase space, as we will see next lecture.



