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Lecture 18

Harmonic oscillator redux:
Coherent states;
Quantum phase space.



Simple harmonic oscillator
The simple harmonic oscillator is one of the most important models in all of 
physics. Let’s give a lightning review of the basics. 
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To solve the Hamiltonian, we introduce creation and annihilation operators:
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Inverting these equations for position and momentum, we find:
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2mω ( ̂a + ̂a†) ̂p = − i
mωℏ

2 ( ̂a − ̂a†)



Simple harmonic oscillator
In terms of          or the number operator    , the Hamiltonian becomes

H = ℏω( ̂a† ̂a +
1
2 ) = ℏω(N̂ +

1
2 )

The eigenstates and energies are given in terms of the number states:

H |n⟩ = En |n⟩ = ℏω(n +
1
2 ) |n⟩

The creation and annihilation operators act on the number states as follows:

̂a |n⟩ = n |n − 1⟩ , ̂a† |n⟩ = n + 1 |n + 1⟩ , ̂a† ̂a |n⟩ = N̂ |n⟩ = n |n⟩

They are sometimes called raising and lowering operators because of this.

̂a†, ̂a N̂



Simple harmonic oscillator
The number states form a complete  
orthonormal basis:

We can create them by applying the 
raising operator to the vacuum

|n⟩ =
( ̂a†)n

n!
|0⟩
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|n⟩⟨n | = 1

|ψ⟩ =
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cn |n⟩ , cn = ⟨n |ψ⟩



⟨n | ̂x |n⟩ ∝ ⟨n |( ̂a + ̂a†) |n⟩ = ( n⟨n |n − 1⟩ + n + 1⟨n |n + 1⟩) = 0

Number state uncertainty
The uncertainty in position or momentum is easy to compute with          :

(Δ ̂x)2 = ⟨n | ̂x2 |n⟩ − ⟨n | ̂x |n⟩2

̂a†, ̂a
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ℏ

2mω ( ̂a + ̂a†)Recall:

[ ̂a, ̂a†] = 1

We have:
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⟨n |( ̂a + ̂a†)2 |n⟩

=
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Similarly, we have:

Recall:



Uncertainty and the large-n limit
A similar calculation for p shows that 

As we expect from Heisenberg, even in the ground state there is uncertainty:

(Δ ̂x)2 =
ℏ

mω (n +
1
2 ) (Δ ̂p)2 = mωℏ(n +

1
2 )

Δ ̂xΔ ̂p = ℏ(n +
1
2 ) ≥

ℏ
2

Thus, the number states cannot directly correspond to a classical limit with a well-defined 
mass on a spring. Perhaps we should have expected this, since they are eigenstates and have 
no dynamics. But it begs the question:

Uncertainty increases as n increases!

What are the “most classical” states of the harmonic oscillator?



Coherent states
The coherent states are defined as eigenstates of the annihilation operator:

|α⟩ = Cα
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|n − 1⟩ = α |α⟩

̂a |α⟩ = α |α⟩
In the number basis, they look like:

Since the annihilation operator is not self-adjoint, 
the eigenvalue can be, and generally is, complex.

The eigenvalue property follows easily:

Cα = e−|α|2/2 is a normalization constant.



Coherent state time evolution
The coherent states are normalized, but not orthogonal:

⟨β |α⟩ = Cα Cβ eαβ*⟨α |α⟩ = 1

|α(t)⟩ = e−iHt/ℏ |α⟩ = Cα

∞
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= e−iωt/2Cα

∞

∑
n=0

(αe−iωt)n

n!
|n⟩ = e−iωt/2 |αe−iωt⟩

However, they are nearly orthogonal when α or β have large magnitude. 

Coherent states evolve in time as follows: |α(t)⟩ = e−iωt/2 |αe−iωt⟩

Coherent states remain coherent states under time evolution! Only α changes.



Coherent state expected values
The expected values of position and momentum change with time for a 
coherent state as they would for a classical mass on a spring.

⟨α(t) | ̂x |α(t)⟩ =
ℏ

2mω
⟨α(t) |( ̂a + ̂a†) |α(t)⟩
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=
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2mω
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Coherent states have minimal uncertainty
Coherent states have the minimal uncertainty allowed by quantum mechanics.

⟨α | ̂x2 |α⟩ =
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2mω
⟨α |( ̂a2 + ̂a† ̂a + ̂a ̂a† + ̂a†2) |α⟩
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⇒ Δ ̂x2 = ⟨ ̂x2⟩ − ⟨ ̂x⟩2 =
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2mω

⟨α | ̂x |α⟩2 =
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Δ ̂p2 =
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2
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ℏ
2

Similarly:The α-dependent terms cancel:

Minimal uncertainty for all α and t!



In quantum phase space, a distribution 
evolves along trajectories labeled by 
expected values,                       .

Classical vs. quantum phase space

In classical phase space, point particles 
evolve along trajectories labeled by 
coordinates (x(t),p(t)). (⟨ ̂x(t)⟩, ⟨ ̂p(t)⟩)

x

p

⟨ ̂x⟩

⟨ ̂p⟩

The coherent states suggest the following analogy with classical mechanics.

Simple harmonic oscillator 
trajectory in classical phase space.

Coherent state distribution evolving as 
a trajectory in “quantum phase space”.

point particle wave packet of width ℏ/2



Thus, the Wigner function is a faithful representation of a quantum state. It allows 
us to visualize states and dynamics in phase space, as we will see next lecture.

The Wigner function (non-examinable)
One way to make sense of quantum phase space is with the Wigner function. 
Starting from a wave function ψ, we transform it as follows:

W(x, p) =
1

πℏ ∫
∞

−∞
⟨x − y |ψ⟩⟨ψ |x + y⟩ e2iyp/ℏ dy

This formula can be inverted to yield 

ψ(x) ≃ ∫
∞

−∞
W(x/2,p) eipx/ℏ dp (equals, modulo an overall phase)


