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Cat states;
Encoding quantum information in harmonic oscillators.



Quantum harmonic oscillators in real life
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Figure 4.9: Cylindrical TE011 resonator. (a) Field distribution of the TE011 mode. The
electric field is concentrated in a torus about the cylindrical ẑaxis, and the electric field
vectors point along �̂. It is visible on the plot that the electric field goes to zero on all the
cavity wall. The magnetic field is zero at the the corners of the cavity and a maximum at the
center. (b) Physical realization of the cylindrical cavity. Two lids close the cylindrical cavity
along the region of minimum magnetic field. Additionally, the small ring perturbation on the
lids, which detunes the degenerate TM111 modes, is visible. An SMA tee allows this cavity
to be measured with the shunt technique. The coupling from SMA to cavity is accomplished
via a loop coupler as described in Section 4.5.2. (Figure used with permission from [100].
See Copyright Permissions.)

degeneracies at this small of a limit. The above estimates serve as a lower bound then for
the splitting between modes. Experimentally, we observe a detuning between TE011 and
TM111 modes of �!/2⇡ ⇡ 30MHz.

The other modes of the cylinder are useful to study many dissipation mechanisms at
once, since they will all have various sensitivities to materials and assembly. For instance,
if the TE011 mode is significantly higher Q than any of these other modes, we require loss
mechanisms beyond conductor loss to explain the other modes (see Table 4.2) [100].

4.5.2 Input-output coupling

As shown in Figure 4.10, coupling to the cylindrical cavity is achieved in a similar manner
as before (see Sec. 4.4.2). However, due to the special configuration of the TE011 mode,
magnetic dipole coupling is required here. Additionally, several other considerations are

LC



Quantum phase space and Wigner functions
One way to make sense of quantum phase space is with the Wigner function. 
Starting from a wave function ψ, we transform it as follows:

W(x, p) =
1

πℏ ∫
∞

−∞
⟨x − y |ψ⟩⟨ψ |x + y⟩ e2iyp/ℏ dy

W(x,p) can be used to visualize quantum states
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Bits and qubits: From classical to quantum information

A single bit takes a binary value {0, 1} and is the “unit” of classical information

Is there a quantum analog, a “unit” of quantum information?

{ |0⟩, |1⟩} c0 |0⟩ + c1 |1⟩

In principle any pair of quantum states will do 

For example, the two lowest states of a  
quantum harmonic oscillator

|n = 0⟩, |n = 1⟩
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The “qubit”:



Manipulating classical information

Any classical computation can be generated using only a very small set of 
“logic gates” acting on 1 or 2 bits at a time, e.g.

NOT

AND



Manipulating quantum information

Quantum “logic gates” are unitary operators acting on a state

U |ψ⟩ = U (c0 |0⟩ + c1 |1⟩)

U |ψ⟩ = U (c00 |0⟩ |0⟩ + c01 |0⟩ |1⟩ + c10 |1⟩ |0⟩ + c11 |1⟩ |1⟩)

One-qubit gate:

Two-qubit gate:

Example:

(2x2 matrix)

(4x4 matrix)



What are quantum computers good for?

Quantum computers can (in theory) solve in a matter of days/hours/weeks 
some computational problems that would take a conventional computer longer 
than the lifetime of the universe. The potential is vast…  

Chemistry and material simulations (drug discovery, new materials etc.)

Optimization problems

Machine learning

Save the environment, cure cancer, end poverty, …



Why don’t we have (useful) quantum computers yet?

The fundamental problem: qubits are extremely fragile
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Energy loss ̂a(c0 |0⟩ + c1 |1⟩) = c1 |0⟩

Encoded information is lost!

̂aIn practice, many other sources of errors,  
but energy loss is often the dominant  
cause of faults.



Encoding quantum information robustly
Idea: Use coherent states as logical states

|0⟩ → |α⟩, |1⟩ → | − α⟩

̂a | ± α⟩ ∝ ± |α⟩States not destroyed: Good!

But superpositions not preserved:

̂a(c0 |α⟩ + c1 | − α⟩) ∝ c0 |α⟩ − c1 | − α⟩
c1 → − c1

this is called a “phase error”  
Bad!

So this did not quite work… can we fix it?
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Cat-state qubits
New idea: Use superpositions of coherent states as logical states

|0⟩ → |0L⟩ = |α⟩ + | − α⟩

States not destroyed, but they do change:

|1⟩ → |1L⟩ = | iα⟩ + | − iα⟩

̂a |0L⟩ ∝ |α⟩ − | − α⟩ =: |0′�L⟩

̂a |1L⟩ ∝ | iα⟩ − | − iα⟩ =: |1′�L⟩

̂a(c0 |0L⟩ + c1 |1L⟩) ∝ (c0 |0′�L⟩ + c1 |1′�L⟩)

Quantum information in principle preserved, even though the states changed!
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|0⟩ → |0L⟩ = |α⟩ + | − α⟩ |1⟩ → |1L⟩ = | iα⟩ + | − iα⟩

̂a(c0 |0L⟩ + c1 |1L⟩) ∝ (c0 |0′�L⟩ + c1 |1′�L⟩)

If we can find a way to detect that the error has happened, we can simply 
update the “encoding” |0L⟩, |1L⟩ → |0′�L⟩, |1′�L⟩

But how do we do this without destroying the encoded information?

What does the measurement need to distinguish, and what must it not 
distinguish?

Cat-state qubits



Detecting errors

Let’s have a look at what the states look like in the number basis

|0L⟩ = |α⟩ + | − α⟩ = Cα
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Similarly

|0L⟩ = 2Cα
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Odd number parity

Measure number parity to detect error!  
 
Is there an observable for number parity? Π̂ = (−1) ̂n = (−1) ̂a† ̂a

Detecting errors

Even number parity



1. Encode  
 

2. Check for errors by measuring number parity  
 

3. Re-define encoding as needed if parity has changed  
 

4. Repeat 2. & 3. for as long as we need to store the information

A protocol for storing quantum information robustly

|0⟩ → |0L⟩ = |α⟩ + | − α⟩ |1⟩ → |1L⟩ = | iα⟩ + | − iα⟩

|0L⟩ → |0′�L⟩ |1L⟩ → |1′�L⟩

Π̂ = (−1) ̂n = (−1) ̂a† ̂a
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the average photon number in the resonator, starting at tw ≈  15 µ s and 
increasing after each subsequent step up to tw ≈  25 µ s to account for the 
decay of the average photon number. Without post-selection, the cat 
code outperforms the uncorrected transmon with a time constant of 
exponential decay that is a factor of about 20 higher, indicating that 
although the coupling between the resonator and transmon is always 

on, the efficient extraction of error syndromes using an ancilla with 
inferior coherence properties still allows for substantial gains in 
 lifetime. Moreover, the cat code surpasses the decay of the uncorrected 
cat code by a factor of about 2.2, demonstrating that applying error 
correction to the logical encoding makes up for the faster error rates 
introduced by the hardware overhead. The palpable difference in 
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Figure 2 | Example of a two-step quantum trajectory executed by the 
QEC state machine. a, Six cardinal points on the Bloch sphere ρinit are 
encoded (‘E’) from the ancilla onto even-parity resonator states; green 
markers indicate the initial coordinate-system orientation. A ‘Wigner 
[tomography] snapshot’ is shown for ( − )→ ( − )α α
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; 
=n 30 ; β is the amplitude of varying coherent displacements ( ˆ β=βD 0 f ) 

and the average parity ˆ ˆ ˆ†
〈 〉 = 〈 〉β βP D PD , where ˆ †= πP ei a a. b, A state machine 

for adaptive parity monitoring with delays tw ≈  13 µ s between each 
measurement. ‘Parity measurement’ rectangles show the Ramsey sequence 
that maps even [+ /− ] (odd [+ /+ ]) parity onto ancilla | g〉  (| e〉 ); the +  or −  
specifies the sign of the π /2 pulse. Diamonds indicate branching on ancilla 
measurement (0 →  no error, | g〉 ; 1 →  error, | e〉 ); ‘π  pulse on ancilla’ 
rectangle indicates ancilla reset (| e〉  →  | g〉 ); clocks indicate recording of 
the error time tj. Dashed purple arrows emphasize the phase difference 
between 10 and 01 due to θK. Rotations θM are due to cross-Kerr 
interactions between the readout and storage resonators during ancilla 

measurements. The parity (Wigner tomogram origin) matches the best 
estimate (border colour); tomograms match the expected resonator state as 
seen in simulations. c, The feedback aligns all states by changing the phase 
of subsequent resonator drives (for example, for Wigner tomography or 
decoding pulses) to account for θK and θM. Ancilla tomography after 
decoding shows the expected rotations of π /2 per error about Z (green 
markers). Different decoding pulses (‘D’) are chosen in real-time 
depending on the parity of the final state. d, The correction to obtain the 
final state ρfin is made via coordinate system rotations ( ˆRz, where ẑ  is the 
qubit axis defined by Pauli matrix σz) by 0 (for 0 errors), − π /2 (for 1 error) 
or − π  (for 2 errors) in software. e, Process tomography results for j =   0, 1 
and 2 errors before correction. Ideal Xjπ/2 process matrices are shown in 
wire-outlined bars. Experimental data for X j

M are shown in solid bars; the 
values are complex numbers with the amplitude on the vertical axis and an 
argument specified by the bar colour. Amplitudes of less than 0.01 are not 
depicted. Process tomography after correction is shown to the right of the 
arrow. I, the identity matrix; F, fidelity.
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Extra slide: The quantum LC oscillator

LC
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Rewrite by defining ω = 1/ LC
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Harmonic oscillator with “mass” C, “position” Φ and “momentum” Q

Ĥ =
Q̂2

2C
+

1
2

Cω2Φ̂2 [Φ̂, Q̂] = iℏ

Q = charge  
Φ = magnetic flux


