Neutron Stars and Radio Pulsars

Shami Chatterjee

The University of Sydney
How does the Sun shine?

- Greek philosopher Anaxagoras: A giant flaming ball of metal?
- Eratosthenes (3rd century BCE): 149 million kilometers away!
How does the Sun shine?

- Greek philosopher Anaxagoras: A giant flaming ball of metal?
- Eratosthenes (3rd century BCE): 149 million kilometers away!
- 1800s: Spectral lines, unknown elements (e.g., He!)
- Lord Kelvin: Gravitational contraction? (Age < 20 million yrs!)
How does the Sun shine?

- Greek philosopher Anaxagoras: A giant flaming ball of metal?
- Eratosthenes (3rd century BCE): 149 million kilometers away!
- 1800s: Spectral lines, unknown elements (e.g., He!)
- Lord Kelvin: Gravitational contraction? (Age < 20 million yrs!)
- 1904, Rutherford: Radioactive decay?
- 1920, Eddington: Nuclear fusion, Einstein’s $E = mc^2$.
- 1957, Margaret Burbidge, "Synthesis of the Elements in Stars"
What powers a star?

Nuclear fusion: $\text{H} \rightarrow \text{He} \rightarrow$ Progressively heavier elements.

- The Iron limit: $\Delta E < 0$ for fusion to heavier elements.
What powers a star?

Nuclear fusion: \(H \rightarrow He \rightarrow \text{Progressively heavier elements.} \)

- The Iron limit: \(\Delta E < 0 \) for fusion to heavier elements.
- When nothing left besides Iron, gravitational collapse occurs.
The fate of a star

Gravitational collapse can be halted by:

- Electron degeneracy pressure → White Dwarfs
- Neutron degeneracy pressure → Neutron Stars
- Nothing ... → Black Holes
The fate of a star

The fate of a star

When the mass of a dying star $> \text{the Chandrasekhar limit}$, we get a Type II supernova explosion.

Supernova explosions in NGC3982, NGC3877.
The fate of a star

When the mass of a dying star $> \text{the Chandrasekhar limit}$, we get a Type II supernova explosion.

The supernova remnant in Cassiopeia (VLA radio image)
The fate of a star

• Baade & Zwicky (1934):
 A supernova represents “the transition of an ordinary star into a neutron star, consisting mainly of neutrons” → small radius, high density.

 ⇒ No apparent means of confirmation.

• Pacini (1967):
 Rapid rotation of NS could power a nebula such as the Crab.

• The same year, observations caught up with theory!
The discovery of radio pulsars

- Hewish et al.: interplanetary scintillation at 3.7 m.
- In 1967, Jocelyn Bell discovered radio pulses from the sky.
The discovery of radio pulsars

Hewish et al. (1968): Source is some form of condensed star? (Originally coded LGM-1, 2, 3!)

Gold (1968): "A slight but steady slowing down" predicted for a rotating NS.

A radio pulsar was discovered in the Crab nebula (1968) and its period was seen to be increasing (1969). Connection between theory and observations completed. Gold (1968, 1969), Pacini (1968)
The discovery of radio pulsars

- Hewish et al. (1968): Source is some form of condensed star? (Originally coded LGM-1, 2, 3!)

- Gold (1968):
 “A slight but steady slowing down” predicted for a rotating NS.

- A radio pulsar was discovered in the Crab nebula (1968) and its period was seen to be increasing (1969).

⇒ Connection between theory and observations completed. Gold (1968, 1969), Pacini (1968)
The discovery of radio pulsars

- Hewish et al. (1968): Source is some form of condensed star? (Originally coded LGM-1, 2, 3!)

- Gold (1968):
 “A slight but steady slowing down” predicted for a rotating NS.

- A radio pulsar was discovered in the Crab nebula (1968) and its period was seen to be increasing (1969).

⇒ Connection between theory and observations completed. Gold (1968, 1969), Pacini (1968)

[Pulsar animations and sounds.]
Basic NS Properties: M, R, T, B

- NS radius is $\approx 10 - 15$ km

(How do we know?)

A typical NS size, compared to Sydney.

Chandrasekhar Limit: NS mass is $1.4 \, M_{\odot}$.

Observed: $1.3 - 1.7 \, M_{\odot}$.

(10^{18} gm/cc (10^{15} kg/m3)).

Temperature from X-ray thermal emission spectra 10^6 - 10^7 Kelvin. Combined with distances: Luminosity.

NS cooling

Equation of State for condensed matter.

Magnetic field inferred from spindown: $10^8 - 10^{12}$ Gauss.

(Or up to 10^{14} Gauss for "magnetars".)
Basic NS Properties: M, R, T, B

- NS radius is $\approx 10 - 15$ km

 (How do we know?)

- Chandrasekhar Limit: NS mass is $\approx 1.4 M_\odot$.

 \rightarrow Observed: $1.3 - 1.7 M_\odot$.

 $\Rightarrow \rho \sim 10^{18} \text{ gm/cc} \ (10^{15} \text{ kg/m}^3)$.
Basic NS Properties: M, R, T, B

- NS radius is ≈ 10 – 15 km (How do we know?)

- Chandrasekhar Limit: NS mass is ≈ 1.4 \(M_\odot \).
 → Observed: 1.3 – 1.7 \(M_\odot \). (How do we know?)
 \[\Rightarrow \rho \sim 10^{18} \text{ gm/cc (}10^{15} \text{ kg/m}^3\text{)}. \]

- Temperature from X-ray thermal emission spectra
 \(\sim 10^{6-7} \) Kelvin. Combined with distances: Luminosity.
 → NS cooling \(\Rightarrow \) Equation of State for condensed matter.
Basic NS Properties: M, R, T, B

- NS radius is \(\approx 10 - 15 \) km
 (How do we know?)

- Chandrasekhar Limit: NS mass is \(\approx 1.4 M_\odot \).
 → Observed: 1.3 – 1.7 \(M_\odot \).
 (How do we know?)
 \[\Rightarrow \rho \sim 10^{18} \text{ gm/cc } (10^{15} \text{ kg/m}^3) \].

- Temperature from X-ray thermal emission spectra
 \(\sim 10^{6-7} \) Kelvin. Combined with distances: Luminosity.
 → NS cooling \(\Rightarrow \) Equation of State for condensed matter.

- Magnetic field inferred from spindown: \(10^{8-12} \) Gauss.
 (Or up to \(10^{14} \) Gauss for “magnetars”.)
The Crab Nebula

Supernova explosion witnessed in 1054 AD by Chinese astronomers; also recorded by Anasazi Indian artists.
The Crab Pulsar, B0531+21

The prototypical young pulsar – supernova remnant system.
The Crab Pulsar, B0531+21

The prototypical young pulsar – supernova remnant system.

Pulsar B0531+21:
- Period = 33 ms (actually $0.03308471603 \pm 0.0000000011$ sec).
- Slowing down at 4.2×10^{-13} s/s.
- Energy loss rate $\dot{E} = I\omega\dot{\omega} = 4 \times 10^{38}$ erg/sec (4×10^{31} Watts).

(Note: Our Sun has a total output of $\sim 3.8 \times 10^{26}$ Watts!)
The Crab Pulsar, B0531+21

The prototypical young pulsar – supernova remnant system.

Pulsar B0531+21:

- Period = 33 ms (actually $0.03308471603 \pm 0.0000000011$ sec).
- Slowing down at 4.2×10^{-13} s/s.
- Energy loss rate $\dot{E} = I \omega \dot{\omega} = 4 \times 10^{38}$ erg/sec (4×10^{31} Watts).

Crab Nebula:

- Radiation lifetime \sim 100 years;
- Energy required $\sim 10^{38}$ erg/sec.

\Rightarrow Emission powered by rotational energy loss of the pulsar.
The Crab Pulsar, B0531+21

The pulsar is visible even at optical frequencies and higher.
The Crab Nebula

Radio (VLA): wisp-like structures.
The Crab Nebula

Optical (HST): the neutron star, wisps, knots traveling at $0.5c$.
The Crab Nebula

X-rays (Chandra): an equatorial wind and jets from the NS poles.
The Crab Nebula

Combined radio (red), optical (green) and X-ray (blue) view: A pulsar powered nebula.
• PSR B1913+16 is a binary pulsar with a neutron star companion, discovered at Arecibo (Hulse & Taylor 1974).

• Spin period = 59 ms; Orbital period = 7.75 hours.
Pulse Timing and General Relativity

- Radiates gravitational waves: Precession of Periastron.
- Agrees with GR prediction (Taylor & Weisberg 1982).

![Cumulative shift of periastron time](chart.png)

- General Relativity prediction

Year:
- 1975
- 1980
- 1985
- 1990
- 1995
- 2000

Cumulative shift of periastron time (s):
- -30
- -25
- -20
- -15
- -10
- -5
- 0

Nobel Prize for discovery of system, 1993.

New double pulsar system J0737 3039 A and B: even better laboratory for GR tests.
Pulse Timing and General Relativity

- Radiates gravitational waves: Precession of Periastron.
 → Agrees with GR prediction (Taylor & Weisberg 1982).

- Nobel Prize for discovery of system, 1993.

- New double pulsar system J0737–3039 A and B: even better laboratory for GR tests.
Not all Neutron Stars are Pulsars!

X-rays show a point source in the Cas A remnant.
Not all Neutron Stars are Pulsars!

X-rays show a point source in the Cas A remnant.

A neutron star, but ...
Very deep radio and X-ray searches reveal no pulsations!