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We investigate a variation of the simple double pendulum in which the two point masses are
replaced by square plates. The double square pendulum exhibits richer behavior than the simple
double pendulum and provides a convenient demonstration of nonlinear dynamics and chaos. It is
also an example of an asymmetric compound double pendulum, which has not been studied in
detail. We obtain the equilibrium configurations and normal modes of oscillation and derive the
equations of motion, which are solved numerically to produce Poincaré sections. We show how the
behavior varies from regular motion at low energies, to chaos at intermediate energies, and back to
regular motion at high energies. We also show that the onset of chaos occurs at a significantly lower
energy than for the simple double pendulum. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

The simple double pendulum consisting of two point
masses attached by massless rods and free to rotate in a plane
is one of the simplest dynamical systems to exhibit chaos.1–3

It is also a prototypical system for demonstrating the La-
grangian and Hamiltonian approaches to dynamics and the
machinery of nonlinear dynamics.4–7 Variants of the simple
double pendulum have been considered, including an asym-
metrical version,8 and a configuration in which the inner
mass is displaced along the rod.9 The compound !distributed-
mass" double pendulum is a generalization that is easier to
implement as a demonstration. For example, the double bar
pendulum in which the point masses are replaced by slender
bars has been the subject of a number of studies,10–12 and a
version of the double square pendulum is available
commercially.13 The dynamics of the general symmetrical
compound double pendulum has also been investigated, in-
cluding a proof that it is a chaotic system.14

The School of Physics at the University of Sydney has a
large-scale variation of the compound planar double pendu-
lum !see Fig. 1". The double square pendulum consists of
two square metal plates connected together by two axles. It is
set into motion by rotating a wheel at the back, which is
attached to the axle on the inner plate. The axles are housed
in low friction bearings, so that when the wheel is turned and
released, the plates continue in a complex motion that lasts
several minutes.15 The demonstration is housed inside a large
glass and metal enclosure measuring about 120 cm by
120 cm by 25 cm, and the square metal plates are approxi-
mately 28 cm on a side. The double square pendulum is lo-
cated in the main corridor of the building and attracts con-
siderable attention from passing students. The School also
has a smaller, bench-mounted version of the double square
pendulum, suitable for classroom demonstrations.

The double square pendulum exhibits diverse and at times
unpredictable behavior. For small pushes on the driving
wheel, the system oscillates back and forth about the equi-
librium position shown in Fig. 1. If the driving wheel is
rotated very rapidly, the inner plate spins rapidly and throws
the other plate outward, and the motion is again fairly regu-
lar. For intermediate rates of rotation of the driving wheel the
system exhibits unpredictable motions.

This general behavior is similar to that of the simple and
compound planar double pendula.2,12 However, the double

square pendulum described here differs from previously
studied systems. It is a compound pendulum, but the center
of mass of the inner plate does not lie along the line joining
the two axles. In this regard it is closest to the asymmetrical
double pendulum studied in Ref. 8, although that pendulum
does not have distributed mass. The dynamics of the double
square pendulum is interesting both from the viewpoint of
elucidating the physics of a classroom physics demonstration
and as a pedagogical exercise illustrating the application of
dynamical theory.

In this paper we investigate an idealized model of the
double square pendulum. We first obtain the equations of
motion using the Lagrangian formalism !Sec. II". General
statements are then made about the basic motion of the
double pendulum: the energy ranges for different types of
motion of the pendulum are identified, and the behavior at
low energy !Sec. III A" and at high energy !Sec. III B" is
described. The equations of motion are expressed in dimen-
sionless form in Sec. IV and solved numerically to produce
Poincaré sections of the phase space of the pendulum, which
are constructed at increasing values of the total energy in
Sec. V. Section VI includes a brief qualitative comparison
with the real double square pendulum.

II. EQUATIONS OF MOTION

Consider a double pendulum comprising two square plates
with side length L and masses m1 and m2 !see Fig. 2". The
inner plate rotates about a fixed axle at P and the outer plate
rotates about an axle fixed to the inner plate at Q. We neglect
the effect of friction at the axles. The plates are assumed to
have uniform mass densities and the axles are assumed to be
massless, so that the center of mass of each plate is at its
center. A coordinate system with origin at P is defined as
shown and the center of mass of the inner and outer plates
are located at positions !x1 ,y1" and !x2 ,y2", respectively. The
center of mass of the plates subtend angles !1 and !2 with
respect to the direction of the negative y axis.

The double square pendulum shown in Fig. 1 has rela-
tively large axles, and in particular the central axle has a
wheel attached to it. The presence of massive axles changes
the locations of the center of mass of each plate. However,
the simple model considered here is expected to capture the
essential dynamics of the real double square pendulum.
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The equations of motion of the model pendulum may be
derived using Lagrangian dynamics.4–7 The Lagrangian is
L=T−V, where T is the kinetic energy and V is the potential
energy of the pendulum. The kinetic energy is the sum of the
kinetic energies of the center of mass of the two plates, each
of which has a linear and a rotational component:

T =
1
2

m1!ẋ1
2 + ẏ1

2" +
1
2

I1!̇1
2 +

1
2

m2!ẋ2
2 + ẏ2

2" +
1
2

I2!̇2
2, !1"

where I1 and I2 are the moments of inertia about the center of
mass, and are given by Ii=

1
6miL2 for i=1,2. The potential

energy is the sum of the potential energy of each plate, and is
given by

V = m1gy1 + m2gy2 + V0, !2"

where V0 is a suitable reference potential.
If we express y1 and y2 in terms of !1 and !2, we obtain

V = − 2m2k1#cos!!1 − "" + sin " cos !2$ + V0, !3"

where

" = tan−1 m2

m1 + m2
, !4"

and

k1 =
%2g!

4
cosec " , !5"

with !=L−2d.
Equilibrium configurations of the pendulum occur when

V=V!!1 ,!2" is stationary with respect to !1 and !2. The four
equilibrium configurations are

!!1,!2" = !",0", !",#", !" + #,0", and !" + #,#";
!6"

but !!1 ,!2"= !" ,0" is the only stable equilibrium. The equi-
librium configurations are illustrated in Fig. 3 with the stable
equilibrium at the upper left. The angle ", defined by Eq. !4",
is the angle that the center of mass of the inner plate makes
with the negative y axis in stable equilibrium.

It is convenient to choose V0 so that the potential energy
of the pendulum is zero in stable equilibrium. In this case the
potential energies of the pendulum in the three unstable equi-
librium configurations are V=Ei !with i=1,2 ,3", where

E1 = %2m2g! , !7a"

E2 = E1 cosec " , !7b"

E3 = E1 + E2. !7c"

The configurations shown in Fig. 3 are labeled by these en-
ergies.

It is convenient to remove the dependence of the equilib-
rium coordinates on " by introducing the change of coordi-
nates

$1 = !1 − "

and

Fig. 1. The double square pendulum in the School of Physics at the Univer-
sity of Sydney. Left: close up of the two plates. Right: the pendulum and its
enclosure.

Fig. 2. A model of the double square pendulum.

Fig. 3. The equilibrium configurations of the double square pendulum, with
the stable equilibrium at upper left. The axles P and Q are indicated by
black circles and the angles !!1 ,!2" and potential energies of the configura-
tions are also shown.
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$2 = !2. !8"

With these choices the potential energy of the pendulum may
be written as

V =
1
2

#!1 − cos $1"E1 + !1 − cos $2"E2$ . !9"

The simple double pendulum has analogous equilibrium con-
figurations, and its potential energy may also be expressed in
the form of Eq. !9".2

In terms of the coordinates in Eq. !8" the kinetic energy of
the pendulum in Eq. !1" may be written as

T = m2!k2$̇1
2 + 2k3$̇1$̇2 sin % + k4$̇2

2" , !10"

where

k2 =
1
12

#!m1/m2"L2 + 3!m1/m2 + 2"!2$ , !11"

k3 = %2!2/4,

k4 =
1
12

!L2 + 3!2" , !12"

and

% = #/4 + " + $1 − $2. !13"

We apply the Euler–Lagrange equations4,5 to the Lagrang-
ian L=T−V given by Eqs. !9" and !10" and obtain the equa-
tions of motion

k2$̈1 + k3!$̈2 sin % − $̇2
2 cos %" + k1 sin $1 = 0, !14a"

k4$̈2 + k3!$̈1 sin % + $̇1
2 cos %" + k5 sin $2 = 0, !14b"

where

k5 = %2g!/4. !15"

III. GENERAL FEATURES OF THE MOTION

The coupled, nonlinear equations of motion in Eq. !14" are
not amenable to analytic solution, and it is necessary to solve
these equations numerically to investigate the motion. Some
general statements can be made about the behavior for a
given energy, and about the nature of the motion at small and
large energies.

The motion of the pendulum depends on its total energy
E=T+V. The magnitude of the energy in relation to the three
energies E1, E2, and E3 specified by Eq. !7" determines
whether the plates of the pendulum can perform complete
rotations. For E&E1 each of the plates may oscillate about
stable equilibrium, but there is insufficient energy for either
plate to perform a complete rotation. For E1'E&E2 the
energy of the pendulum is sufficient to allow complete rota-
tion of the outer plate about the axle at Q !see Fig. 2", but
rotational motion of the inner plate is still prohibited. One or
other of the plates may rotate for E2'E&E3, and simulta-
neous rotation becomes possible when E(E3. The simple
double pendulum has analogous behavior.2

A. Motion at low energy

The nonlinear terms in the equations of motion have neg-
ligible influence when the total energy is small, in which
case the pendulum oscillates with small amplitude about
stable equilibrium. In this regime the equations may be sim-
plified by using small-angle approximations and dropping
nonlinear terms,6,7,16 leading to the linear equations:

k2$̈1 + k6$̈2 + k1$1 = 0, !16a"

k4$̈2 + k6$̈1 + k5$2 = 0, !16b"

where

k6 = k3!cos " + sin ""/%2. !17"

These equations have the general form expected for coupled
linear oscillators.17

Normal modes of oscillation are motions of the pendulum
in which the coordinates $1 and $2 vary harmonically in time
with the same frequency and phase, but not necessarily with
the same amplitude.7 The substitution of harmonic solutions
into the linearized equations of motion !16" leads to the iden-
tification of two normal frequencies )+ and )−, correspond-
ing to fast and slow modes of oscillation

)*
2 =

k1k4 + k2k5 * %!k1k4 − k2k5"2 + 2k1k5k6
2

2a
, !18"

where a=k2k4−k6
2. The amplitude factors A1 and A2 for the

harmonic motions of the two coordinates are related by

&A1

A2
'

*

=
− k5k6

a)*
2 − k1k4

. !19"

For the slow mode !A1 /A2"+(0, so that the plates oscillate
in the same direction; for the fast mode !A1 /A2"−'0, and the
plates oscillate in opposite directions.

A simple case considered in Secs. IV and V occurs when
m1=m2 and !=L; that is, the plates have equal mass and the
axles are located at the corners of the plates. In that case the
normal frequencies are )+(1.66!g /L"1/2 and )−
(0.782!g /L"1/2, and the amplitudes are A1(−0.613A2 for
the fast mode and A1(0.730A2 for the slow mode.

The general motion at low energy may be expressed as
linear combinations of the normal modes,17 in which case the
motion is no longer periodic, but is quasiperiodic. The mo-
tion never quite repeats itself for general initial conditions.
The simple double pendulum has analogous behavior at low
energy.2

B. Motion at high energies

At high energy the pendulum behaves like a simple rotor,
with the system rotating rapidly in a stretched configuration
!!1(# /4, !2(0". In this case the kinetic energy terms in the
Lagrangian dominate the potential energy terms and may be
described by setting g=0 in the equations of motion. The
total angular momentum is conserved, because in the ab-
sence of gravity, there is no torque on the pendulum. The
resulting motion of the system is regular !nonchaotic" be-
cause a system with two degrees of freedom and two con-
straints !conservation of total energy and total angular mo-
mentum" cannot exhibit chaos.1 It follows, for example, that
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the double square pendulum would not exhibit chaos if in-
stalled on the space station. The simple double pendulum has
analogous behavior.2

IV. NUMERICAL METHODS

To investigate the detailed dynamics of the pendulum the
equations of motion are solved numerically by using the
fourth-order Runge–Kutta method.18 The accuracy of the in-
tegration may be checked by evaluating the energy of the
pendulum at each integration step. If there is a discrepancy
between the calculated energy and the initial energy of the
pendulum, the integration step may be modified accordingly.

The equations of motion of the pendulum may be written
in dimensionless form by introducing

t̄ =%g

L
t ,

L̄ =
!

L
,

and

m̄ =
m1

m2
. !20"

An appropriate dimensionless energy is

Ē =
E

1
12

m2gL

. !21"

In Sec. V the system is simplified by considering equal
mass plates and by locating the axles at the corners of the
plates. These choices imply parameter values

L̄ = 1

and

m̄ = 1. !22"

With these choices, the energies of the pendulum corre-
sponding to Eq. !7" are Ē1(16.97, Ē2(37.95, and Ē3
(54.92. In Sec. V we also use dimensionless variables and
drop the bars for simplicity.

V. GENERAL DYNAMICS
AND POINCARÉ SECTIONS

The general dynamics of the pendulum may be investi-
gated by analyzing the phase space for increasing values of
the total energy. The phase space of the pendulum is three-
dimensional. !There are four coordinates, that is, $1, $2, $̇1,
and $̇2, but one of these may be eliminated because energy is
conserved." The phase space can be examined by considering
the two-dimensional Poincaré section,2,19,20 defined by se-
lecting one of the phase elements and plotting the values of
others every time the selected element has a certain value.
For a given choice of initial conditions the Poincaré section
shows points representing the intersection of an orbit in
phase space with a plane in the phase space. Periodic orbits
produce a finite set of points in the Poincaré section, quasi-

periodic orbits produce a continuous curve, and chaotic or-
bits result in a scattering of points within an energetically
accessible region.2,19

A. Defining a Poincaré section

We use conservation of energy to eliminate $̇2 and choose
the Poincaré plane to be $2=0. A point !$1 , $̇1" is recorded
in the phase space of the inner plate whenever the outer plate
passes through the vertical position $2=!2=0. When this
condition occurs, the outer plate may have positive or nega-
tive momentum. To ensure a unique definition of the
Poincaré section a point is recorded if the outer plate has
positive momentum; that is, a point is recorded in the phase
space of the inner plate whenever

$2 = 0

and

p2 ( 0, !23"

where p2="L /"$̇2=6%2$̇1 sin %+8$̇2 is the generalized mo-
mentum corresponding to $2. In the following we present
Poincaré sections as plots of !̇1 versus !1, with the angles in
degrees.

B. Results

Figure 4 shows the results of constructing Poincaré sec-
tions for values of the total !dimensionless" energy ranging
from E=0.01 to E=2+104.21 Each section was constructed
by numerically solving Eq. !16" at a given energy for many
different initial conditions; 40–60 initial conditions were
used for the cases shown in Fig. 4, with initial conditions
chosen to provide a good coverage of the energetically ac-
cessible region in the plane.

For energy E=0.01 #Fig. 4!a"$ the Poincaré section is cov-
ered by two regions of stable elliptical orbits around two
fixed points located on the line !1="(26.6°, and this entire
section has approximate reflection symmetry about this line.
The motion of the pendulum is regular !that is, periodic and
quasiperiodic" at low values of its total energy. The fixed
points correspond to the two strictly periodic normal modes
identified in Sec. III A, with the upper fixed point corre-
sponding to the co-oscillating slow mode, and the lower
fixed point corresponding to the counter-oscillating fast
mode. The behavior observed in Fig. 4!a" corresponds to the
solution of the linearized equations of motion in Eq. !16" and
is strictly regular. The horizontal and vertical extent of the
section is very small !a few degrees" due to the small energy.

Figure 4!b" shows the Poincaré section for E=0.65. The
section has lost the reflection symmetry about !1="
(26.6° observed in Fig. 4!a". This loss of symmetry is re-
lated to the nonsymmetrical geometry of the pendulum !the
center of mass of the inner plate is offset to the right". The
section is much larger, spanning almost 30° in !1, and almost
40° in !̇1 !recall that time is dimensionless", due to the larger
energy. A striking feature of this section is that the lower
fixed point has undergone a period-doubling bifurcation, re-
sulting in a pair of stability islands separated by a separatrix
within the lower stability region. A trajectory producing an
orbit in either of these stability islands produces a corre-
sponding orbit in the other due to the period 2 nature of the
orbit.
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The first signs of chaotic behavior appear at E(4–4.5
#see Fig. 4!c" for E=4.5$ in the form of a scattering of points
around the hyperbolic point that sits between the four stabil-
ity regions. The chaotic region first appears along the trajec-
tory containing the hyperbolic point. As the energy is in-
creased from E=4.5 to E=8 #Fig. 4!d"$ the size of the
chaotic region increases with the loss of regular orbits, par-
ticularly in the stability regions located at the upper left and
upper right of the Poincaré section. The lower stability re-
gion remains unaffected.

The growth of chaos with energy is demonstrated by the
next three Poincaré sections, corresponding to E=E1=16.97

#Fig. 4!e"$, E=20 #Fig. 4!f"$, and E=E2=37.95 #Fig. 4!g"$.
Figure 4!e" corresponds to the pendulum having sufficient
energy for the outer plate to rotate. It is striking that the
Poincaré section has few regions with stable orbits, so that
the pendulum is chaotic even at this modest energy. At E
=20 #Fig. 4!f"$ most of the invariant orbits in the upper sta-
bility region have been lost. Notably the upper fixed point
persists and is surrounded by small regions of stability. The
upper fixed point corresponds to a large amplitude analog of
the slow normal mode. Global chaos is achieved at energy
E(25 !not shown" where a single trajectory covers the en-
tire Poincaré section and the system is completely ergodic.

Fig. 4. Poincaré sections of the double square pendulum for increasing values of the dimensionless total energy E. The panels show !a" E=0.01; !b" E
=0.65; !c" E=4.50; !d" E=8; !e" E=E1=16.97; !f" E=20; !g" E=E2=37.95; !h" E=E3=54.92; !i" E=80; !j" E=150; !k" E=500; and !l" E=20 000.
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Note that this energy is less than E2=37.95, the energy re-
quired for the inner plate to rotate. Hence, completely cha-
otic behavior is achieved even without the rotation of the
inner plate. Global chaos remains up to E(37 at which en-
ergy a small stability island appears in the lower part of the
Poincaré section and grows with energy. Figure 4!g" shows
E=E2=37.95. The Poincaré section has grown to a width of
360° in !1.

A second stability island appears near the upper part of the
Poincaré section at E(75. This stability island corresponds
to quasiperiodic rotational motion of the entire pendulum
and is a very large amplitude analog of the slow normal
mode. The two stability islands, plus a third stability island
located on the left and right hand edges, are shown in the
Poincaré section at E=80 #Fig. 4!i"$.

The sizes of the stability regions increase with energy, as
shown by the cases E=150 #Fig. 4!j"$ and E=500 #Fig. 4!k"$.
The motion of the pendulum becomes regular at very high
values of E, as shown in Fig. 4!l", corresponding to E=2
+104. The appearance of regular behavior at high energies
was discussed in Sec. III B and explained in terms of the
total angular momentum being conserved during the motion,
in addition to the total energy. The section also becomes
approximately reflection symmetric at this energy, about the
line !1=45°.

C. Comparison with simple double pendulum

The geometry of the Poincaré sections presented in Sec.
V B show some differences from those of the simple double
pendulum and double bar pendulum.1–3,12 To better illustrate
the differences we have numerically solved the equations of
motion for the simple double pendulum and constructed
Poincaré sections using the definition given in Sec. V A. For
simplicity we consider a simple double pendulum with equal
masses M, connected by massless rods with equal length h.

The energy of the system is given in terms of 1
12Mgh, and

time is in terms of %h /g. The dimensionless energies corre-
sponding to threshold values for complete rotation of the
inner mass, outer mass, and both masses are E1,s=24, E2,s
=48, and E3,s=72, respectively, where the subscript s de-
notes the simple double pendulum. The energies are equally
spaced due to the symmetry of the pendulum.

Figure 5 illustrates a sequence of Poincaré sections for the
simple double pendulum, which may be considered to be
comparable to certain sections shown in Fig. 4 for the double
square pendulum, as described in the following.

At E=0.01 #Fig. 5!a"$ the Poincaré section is very similar
to that obtained for the double square pendulum at the same
energy #Fig. 4!a"$, except that the section for the simple
double pendulum is symmetric about !1=0 rather than !1
=", and the orbits in the section have exact reflection sym-
metry about this line !rather than approximate symmetry".
All of the Poincaré sections for the simple double pendulum
have strict reflection symmetry about !1=0. In common with
the double square pendulum the section at the lowest energy
consists of regular orbits about two fixed points correspond-
ing to two normal modes.

At somewhat higher energies #Fig. 5!b"$ the orbits in the
Poincaré section distort. Figure 5!b" is comparable to Fig.
4!b" with two notable differences. The Poincaré section for
the double square pendulum exhibits period-doubling of the
lower fixed point, which has no counterpart for the simple
double pendulum !or for the double bar pendulum",1–3,12 and
may be related to the nonsymmetrical geometry of the
double square pendulum. The other obvious difference is the
loss of symmetry in the section for the double square pendu-
lum.

Figure 5!c" illustrates the first appearance of chaos in the
simple double pendulum; this section may be considered to
be comparable to Fig. 4!c". Note that the double square pen-

Fig. 5. Poincaré sections of the simple double pendulum for increasing values of E. The panels show !a" E=0.01; !b" E=5; !c" E=10; !d" E=15; !e" E
=32; and !f" E=20 000.
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dulum first becomes chaotic at an energy substantially lower
than that for the simple double pendulum in comparison to
the respective threshold energies required for complete rota-
tion of the masses. For the double square pendulum chaos
appears at an energy Ec(4, a fraction Ec /E1(0.24 of the
energy required for the outer plate to rotate, and a fraction
Ec /E3(0.07 of the energy required for both plates to rotate.
In comparison, chaos first appears in the simple double pen-
dulum at Ec,s(10, which corresponds to Ec,s /E1,s(0.42 and
Ec,s /E3,s(0.14 of the energy required for rotation of the
outer mass and of both masses, respectively. This difference
may be due to the additional complexity introduced into the
motion by the geometrical asymmetry. Figures 5!c" !E=10"
and 5!d" !E=15" illustrate the development of chaos, and are
comparable to Figs. 4!c" and 4!d".

Figure 5!e" shows the Poincaré section for E=32; this sec-
tion is comparable with Fig. 4!f". In both cases the pendula
have sufficient energy for the lower mass, but not the upper
mass, to rotate. Both Poincaré sections are chaotic, apart
from stable regions around the upper fixed point, which cor-
responds to a large amplitude slow mode.

The geometry of the Poincaré section at very high energy
!E=2+104" shown in Fig. 5!f" is very similar to that of the
double square pendulum at the same energy #Fig. 4!l"$. This
similarity is expected because at high energies the different
pendula perform rotational motion in a stretched configura-
tion, and the difference in geometry is of little importance.
The section for the simple double pendulum is exactly sym-
metrical about !1=0, whereas the section for the double
square pendulum is approximately symmetrical about
!1=45°.

VI. QUALITATIVE COMPARISON WITH A REAL
DOUBLE SQUARE PENDULUM

A detailed comparison with a real double square pendulum
requires an experimental investigation and solution of the
equations of motion including the more complicated distri-
butions of masses in that double square pendulum, which is
beyond the scope of this paper. In this section we make some
brief qualitative comparisons between the results of the
model and the behavior of the double square pendulum.

As mentioned in Sec. I, the real double square pendulum
exhibits regular behavior at high and low energies and ir-
regular behavior at intermediate energies. One way to dem-
onstrate the range of behavior of a real double square pen-
dulum is to set it into motion with high energy, and to watch
the change in behavior as the double square pendulum
slowly loses energy due to friction.

It is straightforward to demonstrate each of the normal
modes in a real double square pendulum by turning the cen-
tral wheel back and forth with small amplitude and with the
appropriate frequencies. By timing multiple oscillations, the
periods of the normal modes were measured to be T+
(0.70*0.01 s and T−(1.23*0.01 s. For equal mass plates
with axles at the corners of the plates !!=L", and L
=0.28 m and g=9.81 m s−2, Eq. !18" predicts T+(0.64 s
and T−(1.36 s. If we include an offset of the axles !!
=0.1L", the result is T+(0.64 s and T−(1.25 s. The slow
mode period predicted by the model is approximately cor-
rect, but the predicted fast mode period is too small by about
10%. These results illustrate the relative accuracy of the
simple model.

We also demonstrated the appearance of chaos in the
double square pendulum. By turning the central wheel
through 180° from stable equilibrium, the double square pen-
dulum may be put into the unstable equilibrium configura-
tion corresponding to energy E2 in the model #the lower left
configuration in Fig. 3$. The double square pendulum may be
held at rest in this position and then released. The model
predicts that the double square pendulum is almost com-
pletely chaotic at this energy, as shown by the Poincaré sec-
tion in Fig. 4!g", and in particular the model is chaotic with
these initial conditions. The motion of the double square pen-
dulum was video taped several times after release from this
initial configuration. Comparison of the corresponding movie
frames !with the correspondence determined by the initial
motion" shows that the motion is the same for a few rotations
and oscillations of the plates, and then rapidly becomes dif-
ferent, providing a striking demonstration of the sensitivity
to initial conditions characteristic of chaos.22
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