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Modeling a falling slinky

R. C. Crossa) and M. S. Wheatlandb)
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(Received 25 March 2012; accepted 20 August 2012)

A slinky is an example of a tension spring: in an unstretched state a slinky is collapsed, with turns

touching, and a finite tension is required to separate the turns from this state. If a slinky is suspended

from its top and stretched under gravity and then released, the bottom of the slinky does not begin to

fall until the top section of the slinky, which collapses turn by turn from the top, collides with the

bottom. The total collapse time tc (typically �0:3 s for real slinkies) corresponds to the time

required for a wave front to propagate down the slinky to communicate the release of the top end.

We present a modification to an existing model for a falling tension spring [Calkin, Am. J. Phys. 61,

261–264 (1993)] and apply it to data from filmed drops of two real slinkies. The modification of the

model is the inclusion of a finite time for collapse of the turns of the slinky behind the collapse front

propagating down the slinky during the fall. The new finite-collapse time model achieves a good

qualitative fit to the observed positions of the top of the real slinkies during the measured drops. The

spring constant k for each slinky is taken to be a free parameter in the model. The best-fit model

values for k for each slinky are approximately consistent with values obtained from measured

periods of oscillation of the slinkies. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4750489]

I. INTRODUCTION

The physics of slinkies has attracted attention since their
invention in 1943. Topics of studies include the hanging
configuration of the slinky,1,2 the ability of a slinky to walk
down stairs,3 the modes of oscillation of a vertically sus-
pended slinky,4,5 the dispersion of waves propagating along
slinkies,6–8 and the behavior of a vertically stretched slinky
when it is dropped.9–11

Slinkies are examples of tension springs, i.e., springs
which may be under tension according to Hooke’s law, but
not compression. Unstretched slinkies have a length ‘1 at
which the turns are in contact, and a finite tension f1 is
needed to separate the turns from this state. They collapse to
this state if not stretched by an external force. This may be
contrasted with a “compression spring,” which can be under
tension or compression according to Hooke’s law. Compres-
sion springs have an unstretched length ‘0 at which the turns
are not in contact, and the tension is zero. They may be com-
pressed to a length ‘1 at which the turns are in contact and
obey Hooke’s law during this compression. Figure 1 shows
tension versus length diagrams for uniform extensions of the
two types of springs.

The vertically falling slinky, mentioned above, exhibits
interesting dynamics which depend on the slinky being a ten-
sion spring.9 A falling compression spring exhibits periodic
compressions and rarefactions, as longitudinal waves propa-
gate along the spring length. A falling tension spring collap-
ses to the length ‘1 during a fall, assuming the spring is
released in an initially stretched state (with length >‘1).

If a slinky is hanging vertically under gravity from its top
(at rest) and then released, the bottom of the slinky does not
start to move downwards until the collapsing top section col-
lides with the bottom. Figure 2 illustrates this peculiar effect
for a plastic rainbow-colored slinky; this figure shows a suc-
cession of frames extracted from a high-speed video of the
fall of the slinky.12 The continued suspension of the bottom
of the slinky after release is somewhat counter-intuitive and
very intriguing—a recent YouTube video showing the effect
with a falling slinky has received more than 800,000 views.13

The physical explanation is straightforward: the collapse of
tension in the slinky occurs from the top down, and a finite
time is required for a wave front to propagate down the
slinky communicating the release of the top.

The basic wave physics behind this behavior follows from
the equation of motion for a falling (or suspended) compres-
sion spring14

m
@2x

@t2
¼ k

@2x

@n2
þ mg; (1)

which applies to a tension spring when the turns are sepa-
rated. In this equation xðn; tÞ is the vertical location of a point
along the spring at time t, m is the total spring mass, and k
is the spring constant. The (dimensionless) coordinate n
describes the mass distribution along the spring, such that
dm ¼ m dn is the increment in mass associated with an incre-
ment in n, with 0 � n � 1. Thus, for a spring with N turns,
the end of turn i corresponds to ni ¼ i=N and is located at
position xi ¼ xðni; tÞ ¼ xði=N; tÞ at time t. Equation (1) is an
inhomogenous wave equation. If the spring is falling under
gravity, then in a coordinate system falling with the center of
mass of the spring (x0 ¼ x� 1

2
gt2), the equation of motion is

the usual wave equation

m
@2x0

@t2
¼ k

@2x0

@n2
: (2)

Equation (2) implies that waves in the mass distribution
(turn spacing) propagate along the length of the spring in a

characteristic time tp ¼
ffiffiffiffiffiffiffiffiffi
m=k

p
. This accounts for the peri-

odic rarefactions and compressions of a compression spring
during a fall, and for the propagation of the wave front ahead
of the collapsing turns in a falling tension spring.

In this paper, we present a new detailed model for the fall
of a slinky, which improves on past models by taking into
account the finite time for collapse of the turns of the slinky
behind the wave front. In Sec. II, we explain the need for
this refinement in the modeling, and we present the details of
the new model in Sec. III. The new model is compared with
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the behavior of two real falling slinkies in Sec. IV, and we
discuss our conclusions in Sec. V.

II. THE COLLAPSE OF THE TURNS AT THE TOP

OF THE SLINKY

A detailed description of the dynamical behavior of a fall-
ing tension spring requires solution of the equations of
motion for mass elements along the slinky that are subject
to gravity and local spring forces, taking into account the

departure from Hooke’s law encountered when slinky turns
come into contact. Because of the complexity of this model-
ing, past efforts involve specific approximations.9–11

For a mass element mDn at a location ni on the slinky, the
equation of motion is (Ref. 14)

mDn
@2x

@t2

����
ni;t

¼ f ðni þ Dn; tÞ � f ðni; tÞ þ mDng

¼ Dn
@f

@n

����
ni;t

þ mDng; (3)

where f ðn; tÞ is the tension force at n. Equation (3) applies to
all points except the top and bottom of the slinky, where the
tension is one sided. When slinky turns are separated at a
point along the slinky, the tension is given by Hooke’s law
in the form9

f ðn; tÞ ¼ k
@x

@n
� ‘0

� �
; (4)

where @x=@n describes the local extension of the slinky, and
‘0 corresponds to a slinky length at which the tension would
be zero, assuming a Hooke’s law relation for all values of
the local extension. Substituting Eq. (4) into Eq. (3) leads to
the inhomogenous wave equation (1).

For a tension spring the length ‘0 cannot be reached
because there is a minimum length

@x

@n
¼ ‘1 > ‘0 (5)

that corresponds to the spring coils being in contact with
each other. At this point, the minimum tension,

f1 ¼ kð‘1 � ‘0Þ; (6)

is achieved and the tension is replaced by a large (infinite)
compression force as the collapsed turns resist further con-
traction of the slinky (see Fig. 1). This non-Hooke’s law
behavior is met when turns collapse at the top of the falling
slinky and the description of this process complicates the
modeling.

A simpler, approximate description of the dynamical col-
lapse of the top of the slinky is to assume a functional form
for the position-mass distribution xðn; tÞ during the collapse,
and then impose conservation of momentum to ensure physi-
cal time evolution. Calkin9 introduced this semi-analytic
approach and specifically assumed a distribution correspond-
ing to slinky turns collapsing instantly behind a downward
propagating wave front located a mass fraction nc ¼ ncðtÞ
along the slinky at time t after the release. The turns of the
slinky at the front instantly assume a configuration with a
minimum tension, so that Eq. (5) applies for all points behind
the front at a given time

f ðn < nc; tÞ ¼ f1: (7)

For points ahead of the front (n > nc), the tension is the
same as in the hanging slinky. The location of the front at
time t is obtained by requiring that the total momentum of
the collapsing slinky matches the impulse imparted by grav-
ity up to that time. (The modeling is presented in detail
in Sec. III B). The Calkin model has also been derived in

Tension Tension

Compression spring Tension spring

Length Length
00

Fig. 1. Tension versus length diagrams for a compression spring (left) and a

tension spring (right). The tension in each spring is zero for spring length ‘0

assuming Hooke’s law applies (this length is not achieved for the tension

spring). The turns of the spring touch for length ‘1.

Fig. 2. Frames extracted from a high-speed video of the fall of a rainbow-

colored slinky, illustrating the collapse of the top of the slinky, and the con-

tinued suspension of the bottom after release of the top. The top end of the

slinky takes �0:25 s to reach the bottom.
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solving the inhomogenous wave equation (1) subject to the
boundary condition given by Eq. (7).10,11

With real falling slinkies the collapse of turns behind the
front takes a finite time. Figure 3 illustrates the process of
collapse of a real slinky using data extracted from a high-
speed video of a fall (this data are discussed in more detail
in Sec. IV A.) The upper panel of Fig. 3 shows the position
of the top (blue circles), of turn eight (black þ symbols),
and of turn ten (red � symbols) versus time, for the first
0.2 s of the fall. The vertical position is shown as negative
in the downward direction measured from the initial posi-
tion of the top [which corresponds to – x in terms of the
notation of Eq. (2)]. The upper panel shows that turns 8
and 10 of the slinky remain at rest until the top has fallen
some distance, and then turn eight begins to fall before
turn ten. The lower panel shows the spacing of turns eight
and ten versus time. The two turns change from the initial
stretched configuration to the final collapsed configuration
in �0:1 s.

This paper presents a method of solution of Eq. (1), which
adopts the approximate approach of Calkin, but includes a
finite time for collapse of the turns. We assume a linear profile
for the decay in tension behind the wave front propagating
down the slinky, which provides a more realistic description
of the slinky collapse.

III. MODELING THE FALL OF A SLINKY

In Secs. III A and III B, we reiterate the Calkin9 model for
a hanging slinky as a tension spring, and for the fall of the
tension spring. In Sec. III C, the new model for the fall of the
slinky is presented.

A. The hanging slinky

For hanging slinkies, it is generally observed that the top
section of the slinky has stretched turns, and a small part at
the bottom has collapsed turns.1 Assuming mass fractions n1

and 1� n1 of the slinky with stretched and collapsed turns,
respectively, the number of collapsed turns Nc is related to
the total number of turns N by

Nc ¼ ð1� n1ÞN: (8)

A hanging slinky such that the turns just touch at the
bottom would have n1 ¼ 1.

The position X ¼ XðnÞ of points along the stretched part
of the stationary hanging slinky is described by setting
@2x=@t2 ¼ 0 in Eq. (1) and integrating from n ¼ 0 to n ¼ n1

with the boundary conditions

Xðn ¼ 0Þ ¼ 0 and
@X

@n

����
n¼n1

¼ ‘1; (9)

corresponding to the fixed location of the top of the slinky,
and the spacing of collapsed turns at the bottom of the slinky,
respectively. The position of points in the collapsed section
at the bottom is obtained by integrating Eq. (5) from n ¼ n1

to n ¼ 1, with the boundary value Xðn1Þ matching the result
obtained by the first integration. Carrying out these calcula-
tions gives

XðnÞ¼
‘1nþ

mg

k
n1�

1

2
n

� �
n; for 0� n� n1

‘1nþ
mg

2k
n2

1; for n1� n� 1:

8><
>: (10)

The total length of the slinky in this configuration is

XB ¼ Xð1Þ ¼ ‘1 þ
mg

2k
n2

1; (11)

where B refers to the bottom of the slinky, and the center of
mass is at

Xcom ¼
ð1

0

XðnÞ dn ¼ 1

2
‘1 þ

mg

2k
1� 1

3
n1

� �
n2

1: (12)

The left panel of Fig. 4 illustrates the model slinky in the
hanging configuration. The slinky is drawn as a helix with a
turn spacing matching XðnÞ, for model parameter values typ-
ical of real slinkies (detailed modeling of real slinkies is pre-
sented in Sec. IV). The chosen parameters are: 80 total turns
(N¼ 80), slinky mass m¼ 200 g, hanging length XB ¼ 1 m,
collapsed length ‘1 ¼ 60 mm, slinky radius 30 mm, and 10%
of the slinky mass collapsed at the bottom when hanging
(n1 ¼ 0:9). The light gray (green online) section of the slinky
at the bottom is the collapsed section, and the dot (red
online) is the location of the center-of-mass of the slinky
(given by Eq. (12) in the left panel).

B. The falling slinky with instant collapse of turns

We assume the slinky is released at t¼ 0 and the turns col-
lapse from the top down behind a propagating wave front. In
the model with instant collapse,9 the process is completely
described by the location nc ¼ ncðtÞ of the front at time t.
The slinky is collapsed where 0 � n < nc but is still in the
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Fig. 3. Data extracted from the video shown in Fig. 2, illustrating the finite

time for collapse of the turns of the slinky. Upper panel: position versus

time of the top of the slinky (circles, blue online), turn eight of the slinky

(þ symbols, black online) and turn ten of the slinky (� symbols, red online).

Position is negative downwards in this panel. Lower panel: The spacing of

turns eight and ten versus time.
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initial state where nc < n � 1. The position of points in the
collapsed section of the slinky, behind the front, is obtained
by integrating Eq. (5) and matching to the boundary
condition

xðn ¼ nc; tÞ ¼ XðncÞ; (13)

to get

xðn; tÞ ¼ ‘1nþ
mg

k
nc n1 �

1

2
nc

� �
(14)

for 0 � n � nc. The lower part of the slinky (nc � n � 1)
has positions described by Eq. (10).

The motion of the slinky after release follows from New-
ton’s second law. The collapsed top section has a velocity
given by the derivative of Eq. (14)

@xðn; tÞ
@t

¼ mg

k
ðn1 � ncÞ

dnc

dt
; (15)

and the mass of this section is mnc. The rest of the slinky is
stationary so the total momentum of the slinky is obtained by
multiplying Eq. (15) by the mass mnc. Setting the momen-
tum equal to the net impulse mgt due to gravity on the slinky
at time t gives

ncðn1 � ncÞ
dnc

dt
¼ k

m
t; (16)

which can be directly integrated to give

n2
c n1 �

2

3
nc

� �
¼ k

m
t2: (17)

At a given time Eq. (17) is a cubic in nc; the first positive
root to the cubic defines the location of the collapse front at
that time. The total collapse time tc—the time for the col-
lapse front to reach the bottom, collapsed section—is defined
by ncðtcÞ ¼ n1, and from Eq. (17) it follows that

tc ¼
ffiffiffiffiffiffiffiffiffiffi
m

3k
n3

1

r
: (18)

Equation (17), together with Eqs. (10) and (14), defines
the location xðn; tÞ of all points on the slinky for t < tc. The
center of mass falls from rest with acceleration g and so has
location

xcomðtÞ ¼ Xcom þ
1

2
gt2; (19)

where Xcom is given by Eq. (12).
Figure 5 shows solution of the instant-collapse model with

the typical slinky parameters used in Fig. 4.12 The upper panel
shows the positions of the top (upper solid curve, blue online),
center-of-mass (middle solid curve, red online), and bottom
(lower solid curve, red online) of the slinky versus time. Posi-
tion is negative in the downward direction so the upper (blue)
curve corresponds to the model expression – x(0, t). The posi-
tion of the front versus time is indicated by the dashed (black)
curve. The lower panel shows the velocity of the top of the
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Fig. 4. Left panel: the model for a hanging slinky, with the slinky repre-

sented as a helix with turn spacing matching XðnÞ. Typical slinky parameters

are used. The dot in each panel indicates the location of the center of mass,

and the light gray (green online) part of the slinky at the bottom is the col-

lapsed section. Right panel: the finite-collapse-time model for the slinky dur-

ing the fall at time t ¼ tc=2. The top dark gray (blue online) section of the

slinky is the section undergoing collapse, above the downward-propagating

collapse front indicated by a dashed horizontal line.
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solid curve), and wave front initiating collapse (dashed curve). Position is
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slinky versus time (solid curve, blue online) and in both pan-
els the total collapse time tc is indicated by the vertical dashed
(pink) line. For the typical slinky parameters used, the spring
constant is k¼ 0.84 N/m and the collapse time is tc � 0:24 s.

Figure 5 illustrates a number of unusual features of the
model. For example, the initial velocity of the top is non-
zero—a consequence of the assumption of instant collapse at
the wave front. From Eqs. (15) and (17), the initial velocity
of the top is

v0
T ¼ �

@x

@t

����
n¼0

¼ �g

ffiffiffiffiffiffiffiffi
mn1

k

r
� �4:5 m=s: (20)

The acceleration of the top at time t¼ 0 must be infinite to
produce a finite initial velocity. The acceleration of the top
of the slinky just after t¼ 0 is positive, i.e., in the upwards
direction, so the top of the slinky falls more slowly with
time. From Eqs. (15) and (17), the limiting value of the
acceleration as t! 0 is

a0
T¼ �

@2x

@t2

����
n¼0

¼ g

3n1

� 3:6 m=s2: (21)

The acceleration of the top becomes negative (down-
wards) after the collision of the top and bottom sections,
when the whole slinky falls with acceleration�g. At the col-
lapse time when the top section impacts the bottom section
there is an impulsive collision causing a discontinuous jump
in the velocity.

C. The falling slinky with a finite time for collapse of
turns

The instant-collapse model requires an unphysical instant
change in the angle of the slinky turns behind the collapse
front, as discussed in Secs. II and III B. This affects the posi-
tions of all turns of the slinky as a function of time behind
the front. To model the positions of the turns of a real col-
lapsing slinky, it is necessary to modify the model.

The lower panel of Fig. 3 indicates that the spacing
between the turns of the slinky decreases approximately line-
arly with time during the collapse. Hence, we modify the
model in Sec. III C to include a linear profile for the decay in
tension behind the collapse front propagating down the
slinky, as a function of mass fraction n. The tension is
assumed to be given by Eq. (4) with

@x

@n
¼½X0ðncÞ � ‘1� 1þ n� nc

D

� �
þ ‘1

for maxð0; nc � DÞ � n � nc; (22)

where X ¼ XðnÞ is given by Eq. (10), and the prime denotes
differentiation with respect to the parameter n. In this equa-
tion, D is a parameter that governs the distance over which
the tension decays back to its minimum value f1. Figure 6
illustrates the local slinky extension at time t as described by

Eq. (22). Behind the front at ncðtÞ, the extension decreases
linearly as a function of n, returning to the minimum value
‘1 over the fixed mass fraction D. Ahead of the front the
extension is the same as for the hanging slinky.

Equation (22) replaces Eq. (5) for the section of the slinky
behind the collapse front and provides a simple, approximate
description of a finite collapse time for the turns behind the
front. The limit D! 0 in the new model recovers the
instant-collapse model.

Using Eq. (10) to evaluate the gradient in Eq. (22) gives

@x

@n
¼ mg

k
ðn1 � ncÞ 1þ n� nc

D

� �
þ ‘1

for maxð0; nc � DÞ � n � nc: (23)

Integrating Eq. (23) and imposing the boundary condition
xðncÞ ¼ XðncÞ using Eq. (10) gives

x ¼ mg

k
ðn1 � ncÞ 1� 1

D
nc þ

1

2D
n

� �� �
nþ ‘1n

þ mg

2k
n2

c 1þ n1 � nc

D

� �
(24)

for maxð0; nc � DÞ � n � nc. If nc > D, there is a completely
collapsed section at the top of the slinky. The mass density in
this section is obtained by integrating Eq. (5) and matching to
the value xðnc � DÞ given by Eq. (24), leading to

x ¼ ‘1nþ
mg

k
nc n1 �

1

2
nc

� �
� 1

2
Dðn1 � ncÞ

� �

for 0 � n � maxð0; nc � DÞ: (25)

Equations (24) and (25) are the counterparts to Eq. (14) in
the instant-collapse model. In the limit D! 0, Eq. (25) is
the same as Eq. (14).

The motion of the slinky in the new model is determined
in the same way as for the instant-collapse model. The veloc-
ity of the top section of the slinky prior to the complete col-
lapse of the top is obtained by differentiating Eqs. (24) and
(25) to get

@x

@t
¼ mg

k
1þ n1 � 3nc=2

D

� �
nc � 1þ n1 � 2nc þ n=2

D

� �
n

� �
dnc

dt
; for maxð0; nc � DÞ � n � nc; (26)

cξ  −Δ

c
(ξ  )X

cξ  (  )t ξ 10
0

ξ1

Fig. 6. The gradient @x=@n, which describes the local slinky extension, ver-

sus mass density n in the finite-collapse-time model. The tension defined by

this profile declines linearly behind the wave front [located at ncðtÞ] from a

value matching the tension in the hanging slinky at the front, to the mini-

mum tension value f1 ¼ kð‘1 � ‘0Þ at n ¼ nc � D. Ahead of the front the

tension is unchanged from that in the hanging slinky.
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and

@x

@t
¼ mg

k
n1 � nc þ

1

2
D

� �
dnc

dt
;

for 0 � n � maxð0; nc � DÞ (27)

Equation (27) is the counterpart to Eq. (15). The total
momentum of the slinky is given by

p ¼ m

ðnc

0

@x

@t
dn ; (28)

and using Eqs. (26) and (27) to evaluate the integral gives

p ¼ m2g

2k
n2

c 1þ n1 � 4nc=3

D

� �
dnc

dt
if nc � D; (29)

and

p¼m2g

k
ncðn1�ncÞþD nc�

1

2
n1�

1

6
D

� �� �
dnc

dt
if nc�D:

(30)

Setting Eqs. (29) and (30) equal to the total impulse mgt
on the slinky up to time t gives equations defining the
location ncðtÞ of the front at time t:

1

2
n2

c 1þ
n1 � 4

3
nc

D

� �
dnc

dt
¼ kt

m
if nc � D; (31)

and

ncðn1�ncÞþD nc�
1

2
n1�

1

6
D

� �� �
dnc

dt
¼ kt

m
if nc�D;

(32)

which are the counterparts to Eq. (16) in the instant-collapse
model. Equations (31) and (32) may be integrated with
respect to nc, leading to

n3
c

Dþ n1 � nc

3D
¼ kt2

m
if nc � D; (33)

and

n2
c n1�

2

3
nc

� �
�Dðn1�ncÞ nc�

1

3
D

� �
¼ kt2

m
if nc�D;

(34)

which are the counterparts to Eq. (17) that defines the loca-
tion of the front in the instant-collapse model.

The total collapse time tc for the slinky (the time for the
front to reach n1) is obtained by setting nc ¼ n1 in Eq. (34).
Interestingly, the result is unchanged from the instant-
collapse case and is given by Eq. (18). A second time scale
relevant for the model is the time tlin for the top of the slinky
to undergo the initial linear collapse (for times t > tlin there
are completely collapsed turns at the top of the slinky). This
is obtained by setting nc ¼ D in Eq. (33) to get

tlin ¼
ffiffiffiffiffiffiffiffi
mn1

3k

r
D: (35)

Figure 7 shows solution of the finite-collapse time model
for the typical parameters used in Figs. 4 and 5, and with a
value of D chosen to match 10 turns of the 80-turn slinky
(D ¼ 10=80 ¼ 0:125). The layout of the figure is the same as
for Fig. 5. The position versus time of the top of the slinky
(upper solid curve in the upper panel) is very similar to that
in the instant-collapse model, but the top initially accelerates
downwards from rest rather than having an initial non-zero
velocity. The location of the front versus time (dashed curve
in the upper panel) is significantly different to that shown in
Fig. 5, and comparison of this curve and the position of the
top of the slinky shows the effect of the finite time for turns
to collapse behind the front. A specific feature of the motion
of the front is that the initial velocity of the front is infinite
(the dashed curve has a vertical slope at t¼ 0). The lower
panel of Fig. 7 plots the velocity versus time of the top of the
slinky and shows that the top is initially at rest, then acceler-
ates rapidly until time tlin ¼ 0:03 s during the initial linear
collapse, which is marked by a sudden change in curvature
of the velocity profile. The initial dynamics of the top differ
from the instant-collapse model; in particular the velocity of
the top of the slinky at time t¼ 0 is zero, rather than having a
finite value. However, after the initial acceleration of the top,
the velocity variation of the top is similar to that in the
instant-collapse model.

The right panel in Fig. 4 also illustrates the solution of the
finite-collapse-time model with the typical parameters,
showing a helix drawn to match x n; 1

2
tc

� 	
—the model slinky

at one half the total collapse time. The upper, dark-gray
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Fig. 7. The finite-collapse-time model for a falling slinky using the same

slinky parameters as in Fig. 5. The collapse of the model slinky is assumed

to occur via a linear decay in tension over ten turns of the slinky. Upper

panel: position versus time of the slinky top (upper solid curve), center-

of-mass (middle solid curve), bottom (lower solid curve), and wave front

initiating collapse (dashed curve). Position is negative downwards in this

figure. Lower panel: velocity of the slinky top versus time. The total collapse

time tc is shown as the vertical dashed line in both panels.
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(blue online) section of the helix is the portion of the slinky
above the collapse front, described by Eq. (23). The location
of the collapse front is shown by a dashed horizontal line,
while the dot (red online) shows the center of mass and the
light-gray (green online) section at the bottom is the col-
lapsed section in the hanging configuration.

IV. MODELING REAL SLINKIES

A. Data

The finite-collapse-time model from Sec. III C is com-
pared with data obtained for two real slinkies, labeled A and
B. The masses, lengths, and numbers of turns of the slinkies
are listed in Table I. Slinky A is a typical metal slinky and
slinky B is the light plastic rainbow-colored slinky shown in
Fig. 2. These two slinkies were chosen because they have
significantly different parameters.

The slinkies are suspended from a tripod and released, and
the fall is captured with a Casio EX-F1 camera at 300
frames/s. The positions of the top and bottom of each slinky
are determined from the movies at time steps of s ¼ 0:01 s in
each case. Figure 2 shows frames from the movie used to
obtain the data for slinky B.

B. Fitting the data and model

The finite-collapse time model from Sec. III C is applied
to the data for the two slinkies as follows. The observed posi-
tions for the top of each slinky during its fall are fitted to the
model using least squares for all time steps. The free parame-
ters in the model are taken to be the collapse mass fraction
D, the spring constant k, and an offset t0 to time, which
describes the time of release of the slinky compared to the
time of the first observation. The parameter t0 is needed
because the precise time of release is difficult to determine
accurately. The additional slinky parameters used are the
measured values of the collapsed length ‘1, the hanging
length XB, and the mass m. (Given ‘1; XB, m, and a chosen
value of k, Eq. (11) determines the value of n1, so equiva-
lently, n1 could be taken as a free parameter instead of k.)

The method of fitting is to fit the data values xTðtnÞ for the
positions of the top of a slinky (T denotes top) at the
observed times tn ¼ ðn� 1Þs (with n ¼ 1; 2;…) to the model
function for the positions evaluated at the offset time, i.e.,
the fit is made to xðn; tÞ evaluated at n ¼ 0 and t ¼ tn � t0.
The model function xðn; tÞ is defined by Eqs. (24), (25), (33),
and (34) (and by the hanging configuration XðnÞ for t < t0).
This procedure correctly identifies t ¼ t0 as the time of
release.

Table II lists the best-fit parameters for the slinkies. The
value of D is given both as a mass fraction and in terms of
the corresponding number of turns of the slinky. For the plas-
tic slinky n1 ¼ 1, implying that no turns are collapsed at the

bottom of the slinky in the hanging configuration. Inspection
of the top left frame in Fig. 2 suggests that this is correct.

Figures 8 and 9 show the fits between the model and the
observed data for Slinkies A and B, respectively. The upper
panel in each figure shows positions versus time for the
slinky top (model: upper solid curve, data: circles, blue
online), turn 10 (model: middle solid curve, data: squares,
black online), and the slinky bottom (model: lower solid
curve, data: �, green online). The lower panel in each figure
shows the velocity of the top of the slinky versus time
(model: solid curve, data: circles, blue online). The measured
velocity of the top of the slinky is determined by centered
differencing of the observed position values, i.e., the velocity
at time tn is approximated by

vTðtnÞ ¼
xTðtnþ1Þ � xTðtn�1Þ

2s
: (36)

Table I. Measured data for two real slinkies.

Slinky A Slinky B

Mass m (g) 215.5 48.7

Collapsed length l1 ðmmÞ 58 66

Stretched length XB ðmÞ 1.26 1.14

Number of turns N 86 39

Table II. Best-fit model parameters for the slinkies.

Slinky A Slinky B

Spring constant k (N/m) 0.69 0.22

n1 0.89 1

n1 (collapsed turns) 9.5 0

D 0.045 0.45

D (turns) 3.9 18

t0 ðsÞ 0.022 0.01

Total collapse time tc ðsÞ 0.27 0.27

Linear collapse time tlin ðsÞ 0.014 0.12
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Fig. 8. The finite-collapse-time model applied to slinky A. The upper panel

shows position versus time for the slinky top (upper), turn 10 (middle), and

slinky bottom (lower), with the observed data represented by symbols and

the best-fit model values by curves. The fitting is based on the observed posi-

tions of the slinky top. The lower panel shows the velocity of the slinky top

versus time. The vertical dashed lines in both panels show the time of

release of the slinky (left), which is a model parameter, and the model col-

lapse time (right).
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These values are estimated for illustrative comparison
with the model, but they are not used in the fitting, which
uses only the position data for the top shown in the upper
panel. Note also that the lower panel shows downward val-
ues as negative, i.e., it shows �vTðtnÞ versus tn. Both panels
in Figs. 8 and 9 also show the time offset t0 for the model by
the left vertical (red online) dashed line, and the total col-
lapse time for the model by the right vertical (pink online)
dashed line.

The results in Figs. 8 and 9 demonstrate that the model
achieves a good qualitative fit to the observed positions of
the top of each slinky. The quality of the fit is shown in the
approximate reproduction of the values of the velocity of the
top of each slinky obtained by differencing the position data
for the top. In particular, the description of the finite time for
collapse of the slinky top given by Eq. (22), with the best-fit
model values, approximately reproduces the observed initial
variation in the velocity of the top of each slinky shown in
the lower panels of the figures. Although we do not attempt a
detailed error analysis, it is useful to consider the expected
size of uncertainties in the data values. If the observed posi-
tion values are accurate to rx � 0:5 cm, the uncertainty in
velocity implied by the centered differencing formula
Eq. (36) is

rv ¼
rxffiffiffi
2
p

s
� 0:4 m=s: (37)

The detailed differences between the observed and best-fit
model velocity values are approximately consistent with
Eq. (37).

The fit is better for slinky A than slinky B, as shown by
specific discrepancies between the model and observed data
for the position of turn 10 (upper panel of Fig. 9), and the ve-
locity of the top (lower panel of Fig. 9). This may be due to
the technique used to hang the slinky: the top turns are tied
together to allow the slinky to be hung vertically (see the first

frame in Fig. 2). About a turn and a half of the slinky was
joined at the top, and as a result the top of the slinky is heav-
ier than in the model, and there is approximately one fewer
turn. The same technique was used for both slinkies, but the
effect may be more important for slinky B, which is signifi-
cantly lighter and has fewer turns, than slinky A. We make
no attempt to incorporate this in our model.

The best-fit values for the model parameter n1 may be
checked by comparison with the observed number of col-
lapsed turns Nc at the bottom of each slinky in the hanging
configuration, which is given by Eq. (8). Alternatively, the
model values for the spring constant k may be checked
by comparison with the period of the fundamental mode of
oscillation of the slinky when it is hanging5

T0 ¼ 4

ffiffiffiffi
m

k

r
: (38)

Table III lists the predictions for Nc and T0 based on the
model values of n1 and k, and the observed values for each
slinky.

Table III shows that the slinky model with best-fit parame-
ters approximately reproduces the observed fundamental
mode periods and numbers of collapsed turns for the two
slinkies. (Note that the two model values Nc and T0 are not
independent.) The discrepancies between the model and
observed values for the fundamental periods are �5%, with
the model values being too large in both cases. It is useful to
consider the expected size of discrepancies in the period pro-
duced by observational uncertainties. From Eqs. (11), (18),
and (38), it follows that

tc ¼
4

3

2ðXB � ‘1Þ
g

� �3=4
1ffiffiffiffiffi
T0

p : (39)

Assuming the distances XB and ‘1 are well-determined,
Eq. (39) implies

rT0

T0

¼ 2
rtc

tc
; (40)

where rT0
and rtc are the uncertainties in T0 and tc, respec-

tively. Taking the value of the time step s ¼ 0:01 s as a rep-
resentative value for rtc in Eq. (40) gives rT0

=T0 ¼ 0:08, i.e.,
an 8% error in the model value for the fundamental mode pe-
riod. This suggests that the model values for T0 are as accu-
rate as might be expected from observational uncertainties
and indicate that it is difficult to determine the mode period
for a real slinky based on measuring the fall of the slinky.

The technique of suspension of the top of the slinky,
involving tying about a turn and a half of the slinky together
to ensure that it hangs vertically, introduces some uncertainty

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

−1.20 

−1.00 

−0.80 

−0.60 

−0.40 

−0.20 

0.00 
V

er
tic

al
 p

os
iti

on
 (

m
)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

−4.00 

−3.00 

−2.00 

−1.00 

0.00 

Time (s)

V
el

oc
ity

 o
f t

op
 (

m
/s

)

Fig. 9. The finite-collapse-time model applied to slinky B. The presentation

is the same as in Fig. 8.

Table III. Predictions (for best-fit model parameters) and observations for

the number of collapsed turns when hanging, and for the fundamental mode

frequency.

Slinky A Slinky B

Model fundamental period T0 ðsÞ 2.23 1.88

Observed fundamental period (s) 2.18 1.77

Model number of collapsed turns Nc 9.5 0

Observed number of collapsed turns 10 0
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into the modeling. It is interesting to investigate the effect of
this step on the initial dynamics of the slinky during the fall.
For this purpose, the slinky is suspended in two additional
ways, with a string tied across both sides of just the top turn,
and with a string tied across both sides of the top two turns,
linked together. These methods of suspension involve fewer,
and greater numbers of turns tied together at the top, respec-
tively, compared with the original method (which had about a
turn and a half tied together at the top). Figure 10 illustrates
the two methods of suspension, showing images (in inverted
grayscale for clarity) of the top few turns of the slinky in the
two cases. The left-hand image shows the case with one turn

tied together at the top while the right-hand image shows the
case with two turns tied together.

With these methods of suspension the slinky is filmed
being dropped, and data are extracted for the first 0.06 s of
the fall in each case; the results are shown in Fig. 11. The
upper panel shows the positions versus time for the top of
the slinky and for the first turn below the turns tied at the
top, for each case: circles and squares, respectively, for sus-
pension by one turn, and þ and � symbols, respectively, for
suspension by two. The lower panel shows the velocities of
the top in each case, obtained by differencing the position
data using Eq. (36) (circles for suspension by one turn and
þ symbols for suspension by two). These results show that
the top of the slinky accelerates from rest more rapidly when
fewer turns are tied together at the top, which is expected
because the inertia of the top is reduced. However, in both
cases, the top achieves a very similar velocity after �0:05 s.
It is expected that the subsequent dynamics of the collapse of
turns will be similar in the two cases. The dependence of the
initial dynamics of the top on the method of suspension will
influence the estimates of model parameters, in particular the
collapse mass fraction D. However, it is expected that the
estimate of the spring constant k will be less influenced
because this parameter is determined largely by the identifi-
cation from the data of the total collapse time tc. The depend-
ence of the fitting on the method of suspension of the top of
the slinky could perhaps be reduced by fitting to the positions
of turns other than the top turn during the fall.

V. CONCLUSIONS

The fall of a slinky illustrates the physics of a tension
spring, and more generally wave propagation in a spring.
This paper investigates the dynamics of an initially stretched
slinky that is dropped. During the fall the slinky turns col-
lapse from the top down as a wave front propagates along
the slinky. The bottom of the slinky does not begin to fall
until the top collides with it. A modification to an existing
model9 for the fall is presented, providing an improved
description of the collapse of the slinky turns. The modifica-
tion is the inclusion of a finite time for collapse of turns
behind the downward propagating wave front. The new
model is fitted to data obtained from videos of the falls of
two real slinkies having different properties.

The model is shown to account for the observed positions
of the top of each slinky in the experiments, and in particular
reproduces the initial time-profile for the velocity of the top
after release. The spring constant of the slinky is assumed as
a free parameter in the model, and the best-fit model values
are tested by comparison with independent determinations of
the fundamental mode periods for the two slinkies, which
depend on the spring constants. The model values appear
consistent with the observations taking into account the
observational uncertainties.

The new model for the slinky dynamics during the fall
developed here is semi-analytic, and allows treatment of a
tension spring including approximate description of the dy-
namics of the collapse of the spring. During the collapse of
the top of the slinky the turns collide, but the model does not
describe this process in detail. Instead, the collapse is
approximately described by the assumption of a linear
decrease in tension as a function of mass density along the
spring behind the front initiating the collapse. The linear
approximation is motivated by the experimental data from

Fig. 10. An experiment with different methods of suspension of the top of

slinky B. In the left-hand image the top is suspended from a string tied

across a diameter of the first turn of the slinky. In the right-hand image the

string is tied around the first two turns.
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Fig. 11. Data extracted for the initial fall of slinky B following suspension

using the two methods shown in Fig. 10. The circles and squares show

results for suspension by one turn and the þ and � symbols for suspension

by two turns. The upper panel shows the position versus time of the top and

of the first turn below the initially tied top section. The lower panel shows

the velocities of the top in each case, obtained by differencing the position

data (circles for suspension by one turn and þ symbols for suspension by

two).
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the slinky videos, which shows that the spacing between
slinky turns during the collapse decreases approximately lin-
early with time.

The behavior of a falling slinky is likely to be counter-
intuitive to students and provides a useful (and very simple)
undergraduate physics lecture demonstration. The explanation
of the behavior may be supplemented by showing high-speed
videos of the fall. The modeling of the process presented here
is also relatively simple and should be accessible to under-
graduate students.
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