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Abstract Improvements to an existing method for calculating nonlinear force-free
magnetic fields (Wheatland 2006, Solar Phys. 238, 29) are described. In particular
a solution of the 3-D Poisson equation using 2-D Fourier transforms is presented.
The improved nonlinear force-free method is demonstrated in application to linear
force-free test cases with localized non-zero values of the normal component of the
field in the boundary. These fields provide suitable test cases for nonlinear force-free
calculations because the boundary conditions involve localized non-zero values of the
normal components of the field and of the current density, and because (being linear
force-free fields) they have more direct numerical solutions. Despite their simplicity,
fields of this kind have not been recognised as test cases for nonlinear methods before.
The examples illustrate the treatment of the boundary conditions on current in the
nonlinear force-free method, and in particular the limitations imposed by field lines
which connect outside of the boundary region.
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1. Introduction

Coronal magnetic fields govern solar activity, so there is considerable interest in
their accurate modelling. The most detailed determinations of magnetic field values
on the Sun come from polarisation measurements of spectral lines in the low solar
atmosphere. In principle photospheric and chromospheric vector magnetic field values
derived from these measurements may be used as boundary values for calculating
the overlying coronal field.

A popular approach involves assuming the coronal magnetic field B is force-free,
i.e. has zero Lorentz force (e.g. McClymont, Jiao and Mikic, 1997; Amari et al.,
1997; Neukirch, 2005). The problem then consists of solving the nonlinear force-free
equations (∇× B) × B = 0 together with ∇ · B = 0 subject to suitable boundary
conditions derived from the data. An alternative statement of the equations is

∇× B = αB (1)

1 School of Physics, University of Sydney email:
m.wheatland@physics.usyd.edu.au



Wheatland

and

B · ∇α = 0, (2)

where α is the force-free parameter. In this form the appropriate boundary conditions
are the specification of Bn, the normal component of B in the boundary, together
with α over one polarity of Bn (one sign of Bn). The values of α over one polarity
together with Bn specify the normal component of the current density Jn = αBn/µ0

over the polarity. Typically the curvature of the Sun is neglected and the problem is
considered in the half space z > 0, with z = 0 as the boundary.

There are many difficulties with the nonlinear force-free approach to coronal
field modelling. Key difficulties include uncertainties in the inversion of spectro-
polarimetric measurements to yield magnetic field values, the problem of the 180-
degree ambiguity in the azimuthal angle of the field component transverse to the
line of sight (e.g. Metcalf et al., 2006), the intrinsic difficulty of solving the coupled
nonlinear partial differential equations, and the inconsistency of the boundary data
with the force-free assumption (e.g. Metcalf et al., 1995; Metcalf et al., 2007). All of
these problems need to be overcome before the approach can be routinely applied to
solar data.

A variety of numerical solution methods have been proposed for the nonlinear
force-free equations, including current-field iteration (e.g. Grad and Rubin, 1958;
Sakurai, 1981; Amari, Boulmezaoud, and Mikic, 1999; Wheatland, 2006), magnetofric-
tional methods (e.g. Chodura and Schlueter, 1981; Valori, Kliem, and Keppens,
2005), direct vertical integration of the equations (e.g. Wu et al., 1990), the op-
timization approach (Wheatland, Sturrock, and Roumeliotis, 2000; Wiegelmann,
2004), and the boundary element method (Yan and Sakurai, 2000). Many of the
methods are slow, and may be too inefficient to be applied to new, high resolution
boundary data (Schrĳver et al., 2006). For three-dimensional problems on grids with
N3 points, the speed of a method may be described by the scaling of the time taken
as a function of N . Recently Wheatland (2006) presented a nonlinear method based
on the current-field iteration approach (Grad and Rubin, 1958) which scales as N4,
making it one of the fastest approaches (see also Inhester and Wiegelmann, 2006).
Work on understanding and improving nonlinear force-free methods continues (e.g.
Amari, Boulmezaoud, and Aly, 2006).

It is important to have appropriate test cases for nonlinear force-free methods. The
axisymmetric nonlinear examples due to Low and Lou (1990) have been widely used
(e.g. Wheatland, Sturrock, and Roumeliotis, 2000; Wiegelmann et al., 2006; Schrĳver
et al., 2006; Inhester and Wiegelmann, 2006; Amari, Boulmezaoud, and Aly, 2006),
but they are limited in that the boundary conditions on α are not very localized.
Solar magnetic field measurements provide lower boundary values for the normal
component of the field and α over restricted regions on the Sun. Hence appropriate
test cases should have all boundary information localized in spatial extent. Titov
and Démoulin (1999) constructed a force-free equilibrium consisting of a twisted
flux tube embedded in a background potential field, which has localized nonzero
α. This example has also been considered as a test case for nonlinear force-free
methods (Wiegelmann et al., 2006). However, the Titov-Démoulin equilibrium is
also not localized in that the background potential field is produced in part by a
(buried) infinite line current, so the boundary conditions on Bn are not localized.
The calculations in Wiegelmann et al. (2006) highlighted this limitation in that the
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Titov-Démoulin equilibrium was not well reproduced by the nonlinear methods using
localized lower boundary data.

This paper presents some specific improvements to the Wheatland (2006) method
for calculation of nonlinear force-free fields. In particular a new method of solving
the Poisson equation in 3-D using 2-D Fourier transforms is exploited. This solution
is analogous to the Fourier solution to the linear force-free equations commonly used
in the solar context (Nakagawa and Raadu, 1972; Alissandrakis, 1981). This paper
also presents the application of the improved nonlinear force-free code to a class of
linear force-free fields which have Bn = 0 everywhere except in localized spots. For
these fields the boundary conditions on both Bn and Jn = αBn/µ0 for the nonlinear
method are localized, so they are well suited to testing nonlinear force-free methods.
This point which does not appear to have been noticed in the literature before.

The layout of the paper is as follows. The improvements to the nonlinear force-
free method are outlined in Section 2. The application to linear force-free test cases
is given in Section 3, and conclusions are presented in Section 4.

2. Improvements to Method

2.1. Current-Field Iteration

Wheatland (2006) presented a fast version of current-field iteration (Grad and Rubin,
1958). A variety of implementations of current-field iteration have been proposed
(e.g. Sakurai, 1981; Amari, Boulmezaoud, and Mikic, 1999; Inhester and Wiegel-
mann, 2006). The general approach in a half space z > 0 (where z = 0 is the
boundary) involves solution, at iteration k, of the linear equations

∇× Bk+1 = αkBk (3)

and

(Bk+1 · ∇)αk+1 = 0 (4)

subject to the boundary conditions

ẑ ·Bk+1
∣∣∣
z=0

= ẑ · Bobs
∣∣∣
z=0

(5)

and

αk+1(x, y, 0)
∣∣∣
Bz>0

= αobs(x, y, 0)
∣∣∣
Bz>0

, (6)

where αobs and Bobs denote given boundary values and ẑ is the unit vector in the z
direction. Alternatively, the last boundary condition may be replaced by

αk+1(x, y, 0)
∣∣∣
Bz<0

= αobs(x, y, 0)
∣∣∣
Bz<0

, (7)

i.e. boundary values of αobs on the negative polarity may be used. The iteration is
generally started with B0 chosen to be the potential field matching the boundary
conditions on the right hand side of Equation (5).
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2.2. Wheatland (2006) Implementation

The Wheatland (2006) implementation solves Equation (3) as follows. The field in
z > 0 is separated into potential and non-potential components: Bk+1 = B0+Bk+1

c ,
with the potential component B0 satisfying

∇× B0 = 0 (8)

and

ẑ · B0|z=0 = ẑ ·Bobs
∣∣∣
z=0

. (9)

The potential field is calculated initially using a Fourier solution (Alissandrakis,
1981). The non-potential component Bc satisfies

∇× Bk+1
c = αkBk (10)

in z > 0, subject to

ẑ ·Bk+1
c

∣∣∣
z=0

= 0. (11)

Equation (10) is recast as Poisson’s equation by introducing the vector potential
Bk+1

c = ∇× Ak+1
c , and adopting the Coulomb gauge (∇ · Ak+1

c = 0). The current
distribution in all space is assumed to be

Jk
c =

{
αkBk/µ0 for z ≥ 0,[−Jk

cx(x, y,−z),−Jk
cy(x, y,−z), Jk

cz(x, y,−z)
]

for z < 0.
(12)

Poisson’s equation

∇2Ak+1
c = −µ0J

k
c (13)

is then solved using 3-D Fourier transforms. The symmetry of the current distribu-
tion (12) ensures the boundary condition (11) in the plane z = 0.

These steps solve Equation (3). To solve Equation (4), field line tracing is used.
For each point r on the computational grid, the field line threading the point is traced
in both directions. If the field line leaves the box by the side or top boundaries of the
grid, then α(r) is assigned to be zero. If the field line connects to z = 0 at both ends,
α(r) is assigned equal to the value of α at the positive polarity end of the field line
(alternatively, the negative polarity end may be used). The prescription that field
lines which leave the grid by the side or top boundaries carry no current provides
a simple way to deal with the problem of missing boundary information on z = 0
outside of the region at the base of the computational grid. Other approaches are
also possible, and we will return to this question in Section 4.

Convergence of the method may be determined by monitoring the change in the
current-weighted average angle between the current density and the magnetic field
at each iteration (Wheatland, Sturrock, and Roumeliotis, 2000), or the change in the
magnetic energy at each iteration.

The time taken to solve Equation (3) scales as N3 log N , and the time taken
to solve Equation (4) scales as N4. The number of iterations is not dependent (or
is only very weakly dependent) on N . The overall time taken then scales with the
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slowest step, i.e. as N4. Because of this relatively fast scaling, the method may be
applied to larger grids. For example, in a recent workshop (Metcalf et al., 2007), the
code was applied to test cases on a 320 × 320× 256 grid.

2.3. Modifications

The method of solution of Equation (3) described above is simple and fast, but it has
a drawback. To calculate a field on a Nx×Ny×Nz grid, the current density Jk

c is con-
structed on a grid with size Nx×Ny×2Nz. The doubling of the vertical dimension is
undesirable when large grids are used, because of the memory use involved in storing
the arrays associated with the calculation. The problem is exacerbated if the arrays
are enlarged by padding with zeroes in all three dimensions. In the code described
in Wheatland (2006) the arrays are padded to the nearest power of two in all three
dimensions, so that the size of the grid involved in the Fourier transform solution is
2ceiling(log2 Nx) × 2ceiling(log2 Ny) × 2ceiling(log2 2Nz). The padding with zeroes is not
strictly required; it is done to reduce the appearance of periodicity introduced by
discrete Fourier transforms, and to permit the use of simple Fast Fourier Transform
(FFT) routines. Provided the current density is localized near the centre of the
computational grid, the padding makes little difference. As an example, for the tests
performed on a 320×320×256 grid described in Metcalf et al. (2007), the arrays used
in the Fourier transform solution have size 512×512×512. A vector field represented
in single precision on a grid this size requires 1.5 GB of memory. In the following we
describe a method of solution of Equation (3) which does not require doubling the
vertical dimension of the arrays, and hence has smaller memory requirements.

We consider solution of Poisson’s equation

∇2Ak+1
c = αkBk (14)

in the half space z > 0. Hereafter we write −µ0J
k to represent the right hand side

of this equation. The boundary condition (11) is satisfied if we choose

Ak+1
cx

∣∣∣
z=0

= Ak+1
cy

∣∣∣
z=0

= 0, (15)

and the gauge condition implies the additional boundary condition

∂Ak+1
cz

∂z

∣∣∣∣
z=0

= 0. (16)

We also require the boundary conditions Ak+1
c → 0 as z → ∞.

Equation (14) may be solved subject to the stated boundary conditions by Fourier
transforming in x and y. The tranformed equation is

d2Ãk+1
c

dz2
− κÃk+1

c = −µ0J̃
k, (17)

where Ãk+1
c = Ãk+1

c (u, v, z), J̃k = J̃k(u, v, z), and κ = 4π2(u2 + v2), with u and v
representing wave numbers. The Fourier transformed boundary conditions are

Ãk+1
ci

∣∣∣
z=0

= 0 for i = x, y, (18)
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dÃk+1
cz

dz

∣∣∣∣
z=0

= 0, (19)

and

Ãk+1
c → 0 as z → ∞. (20)

Equation (17) is a linear nonhomogeneous second order ODE, and the general
solution may be represented in terms of the sum of the two independent solutions
of the homogeneous ODE, and a particular solution of the nonhomogeneous ODE
(e.g. Arfken and Weber, 2001). This general solution contains six constants of inte-
gration, which may be determined by imposing the boundary conditions (18)-(20).
The resulting solutions for the Fourier transformed vector potential are

Ãk+1
ci =

µ0

2κ
(I1i + I2i − I3i) (21)

for i = x, y, and

Ãk+1
cz =

µ0

2κ
(I1z + I2z + I3z) , (22)

where

I1i =

∫ ∞

z

e−κ(s−z)J̃k
i (u, v, s)ds, (23)

I2i =

∫ z

0

e−κ(z−s)J̃k
i (u, v, s)ds, (24)

and

I3i =

∫ ∞

0

e−κ(z+s)J̃k
i (u, v, s)ds. (25)

We note that Equations (21)-(22) could be written in somewhat simpler forms using
sinh(κz), etc. However, from a computational point of view the stated forms are
preferable in that each of the integrals (23)-(25) explicitly approaches zero as z → ∞.
Alternative forms require numerical cancellation of large terms as z → ∞.

The Fourier transform of the field Bk+1
c may be obtained from Equations (21)-(25)

using the Fourier transform of Bk+1
c = ∇× Ak+1

c . The results may be written:

B̃k+1
cx = −µ0

2κ
[2πiv (I1z + I2z + I3z) + κ (I1y − I2y + I3y)] , (26)

B̃k+1
cy =

µ0

2κ
[κ (I1x − I2x + I3x) + 2πiu (I1z + I2z + I3z)] , (27)

and

B̃k+1
cz =

µ0

2κ
[−2πiu (I1y + I2y − I3y) + 2πiv (I1x + I2x − I3x)] . (28)

The computational procedure is as follows. The current density Jk = αkBk/µ0

is calculated on on a Nx × Ny × Nz grid. The arrays are then padded with ze-
roes in the x and y directions to the nearest power of two, i.e. the grid size is
2ceiling(log2 Nx) × 2ceiling(log2 Ny) × Nz. The padding is again not essential, but re-
duces the appearance of periodicity in the solution and permits the use of simple
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FFT routines. The padded current density arrays are then numerically 2-D Fourier
transformed (in x and y) at each value of z, and Equations (26)-(28) are used to
construct the 2-D Fourier transform of Bk+1

c at each z. The integrals (23)-(25) are
performed using the extended trapezoidal rule. Because of the method of construction
of α(r) the current density is zero above some height in the box, and hence the
integrals (23) and (25) are performed to this height rather than to the upper limit
of infinity. The results are then numerically inverse Fourier transformed at each z to
yield Bk+1

c .
The new method of solution of Poisson’s equation has a different scaling for the

time taken. The time-limiting step is that at each point on the grid, integrals in one
dimension need to be performed. The integrals require of order N operations for
each of N3 points, so this step scales as N4. Hence the new method of solution of
Equation (3) has the same scaling as the solution of Equation (4), and overall the
method is expected to scale as N4. Numerical experiments confirm this expectation,
so the new method has the same overall scaling as the previous approach. The
advantage of the new method is that it requires only half as much storage space
for the arrays holding values of the current density and the vector potential. This
is expected to provide a substantial advantage when the method is applied to high
resolution data.

A number of other modifications of the method described in Wheatland (2006)
have also been implemented. Some of these are simple changes to improve the
efficiency of the code. For example, in the solution of Equation (4) the field line
tracing is started from grid points in the plane z = 0 and progresses upward through
the grid. The code now identifies (at each iteration) the minimum height zmin at
which α(x, y, zmin) = 0 for all x and y. This is the maximum height of field lines
which connect to z = 0 at both ends. The values of α(x, y, z) for z > zmin are then
immediately set to zero, without further field line tracing. The value zmin is also
used as the upper limit in the integrals (23) and (25), as mentioned previously.

A further modification concerns the choice of the boundary conditions on α. As
stated above, there is a choice in the assignment of α(r) between the value α+ at the
positive polarity end of the field line threading the point r, and the value α− at the
negative polarity end. This may be used to safeguard against inconsistent boundary
values of α, as suggested by Inhester and Wiegelmann (2006). Those authors suggest
using a weighted average of α+ and α−, the weights depending on the relative
reliabilities of the boundary values. We consider instead the equally-weighted average
α(r) = 1

2 (α+ + α−). For simple (consistent) test cases such as the Low and Lou
(1990) fields, we find that this choice gives comparable results to the choices α±.

In common with the Wheatland (2006) code, the new code is parallelized using
OpenMP (e.g. Chandra et al., 2001), for use on shared memory parallel computers.
The method is also well suited to parallelization for distributed memory archi-
tectures, e.g. using MPI (e.g. Gropp, Lusk, and Skjellum, 1999), as discussed in
Section 4.

3. Demonstration on Linear Force-Free Test Cases

The modified method has been tested on the cases considered in Wheatland (2006),
and found to give very similar results. This is as expected, since the method differs
only in the treatment of the vertical boundary conditions. In this section we consider
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the application to a different problem, a class of linear force-free fields, to illustrate
both the utility of these test cases and the method.

3.1. Linear Force-Free Test Cases

We consider linear force-free fields with Bn = 0 except in restricted patches. Linear
force-free fields have α constant in space, in which case the force-free equations
reduce to the Helmholtz equation which has well-known solutions (e.g. Nakagawa
and Raadu, 1972; Alissandrakis, 1981). Choosing Bn = 0 except in local patches has
the advantage that the boundary conditions for application of the nonlinear methods
(e.g. Bn together with the value of α where Bn > 0) are localized.

As a specific example we consider a bipole consisting of two circular pillboxes in
the boundary 0 ≤ x ≤ L, 0 ≤ y ≤ L:

Bn(x, y) =




B0 if (x − 1
2L)2 + (y − 1

2L + R)2 ≤ a2

−B0 if (x − 1
2L)2 + (y − 1

2L − R)2 ≤ a2

0 otherwise.
(29)

To keep the bipole relatively localized we choose a = 0.05L and R = 0.06L (this is
referred to as Case 1). We also need to choose a value of α. A solution with finite
energy exists provided the Fourier components of the boundary conditions on Bn

are zero for wave numbers u and v such that (u2 +v2)1/2 ≤ |α|/(2π) (Alissandrakis,
1981). This solution is known as the small scale solution. We assume the boundary
conditions are represented on a M × M grid over the region 0 ≤ x ≤ w, 0 ≤ y ≤ w
with w ≥ L, the greater extent being padded with zeroes. The smallest non-zero
wave numbers associated with discrete Fourier transforms of the boundary conditions
then have magnitude umin = vmin = 1/(M∆x), where ∆x is the spatial step. (The
Fourier component for u = v = 0 is zero because the flux is balanced.) This implies
the limit α ≤ 2π/(M∆x) for the small scale solutions. In the following we consider
calculations on a 200 × 200 × 200 grid, so there are N = 200 points between x = 0
and x = L, and ∆x = L/(N − 1). For the Fourier transform solution of Poisson’s
equation we pad with zeroes in the x and y direction to size M = 256. In that case
the limit is αL ≤ 2π(N − 1)/M ≈ 4.88. We consider αL = 4.85, very close to the
maximum value.

The results for Case 1 are shown in Figure 1. Panel (a) in the figure shows the
linear force-free test case calculated using the small scale solution (Alissandrakis,
1981). The view is looking down on the central part of the computational domain
from above. The boundary values of Bn are shown as a greyscale image in the lower
boundary, and some representative field lines are shown as tubes. Panel (b) in the
figure shows the nonlinear force-free field obtained with the current-field iteration
method after 10 iterations. The method converges rapidly, and at the tenth iteration
the fractional change in the energy is ≈ 10−6. The calculation (on a 200×200×200
grid) took approximately two hours using four processor cores, and the peak memory
use was 600 MB. The view in panel (b) is the same as in panel (a), and in particular
field lines are drawn from the same starting points. There is good agreement for the
low-lying field lines linking the two poles, but the higher field lines disagree. This
disagreement occurs because points r on the computational grid threaded by field
lines which leave the grid by the side or top boundaries have α(r) = 0, according
to the procedure described in Section 2.2. Hence there is an absence of current in
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(a) (b)

Figure 1. Test Case 1: Panel (a) shows the linear force-free field, and panel (b) shows the
nonlinear force-free reconstruction.

‘open-field’ regions, by comparison with the linear force-free solution. This difference
means that the nonlinear calculation will never exactly reproduce the linear force-free
solution. This point illustrates the handling of the boundary conditions on current
in the present method.

To quantify the agreement (and disagreement) between the linear force-free solu-
tion and the nonlinear reconstruction in Case 1, we consider the metrics presented
in Schrĳver et al. (2006), namely the vector correlation (Cvec), the Cauchy-Schwarz
correlation (CCS), the complement of the normalised vector error (E′

n), the comple-
ment of the mean vector error (E′

m), and the relative magnetic energy (ε). These
quantities should all be unity for a perfect reconstruction. For a solution field Bi

and a reconstructed field bi defined at S points the metrics are

Cvec =

∑S
i=1 Bi · bi(∑S

i=1 |Bi|2
)1/2 (∑S

i=1 |bi|2
)1/2

, (30)

CCS =
1

S

S∑
i=1

Bi · bi

|Bi||bi| , (31)

E′
n = 1 −

∑S
i=1 |Bi − bi|∑S

i=1 |Bi|
, (32)

E′
m = 1 − 1

S

S∑
i=1

|Bi − bi|
|Bi| , (33)
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Table 1. Measures of agreement between the linear
force-free test case and the nonlinear reconstruction.

Field Cvec CCS E′
n E′

m ε

Case 1 0.999 0.956 0.901 0.729 0.994
Case 2 1.000 1.000 0.985 0.972 1.000

and

ε =

∑S
i=1 bi · bi∑S
i=1 Bi ·Bi

. (34)

The first row of Table 1 presents the stated metrics for Case 1 calculated for
the inner one-third of the computational grid, which just encompasses the boundary
location of the poles (indices 67:122, 67:122, and 0:65, in the x, y, and z directions).
There is reasonable agreement, although the discrepancy is clear, in particular for
the metrics E′

n and E′
m.

We also consider a second case (Case 2) in which the bipole is reduced in size by
half (a = 0.025L and R = 0.03L), for the same value of α (α = 4.85), and the same
grid size (200 × 200 × 200). In this case the bipole is more localized, so we expect
a better reproduction using the nonlinear force-free method. Figure 2 shows the
boundary conditions and field lines for Case 2, in the same presentation as Figure 1
(in particular the field of view is the same). Once again the field lines close to the
bipole are accurately reproduced, but the field lines further from the bipole are less
well reproduced. The second row of Table I also presents metrics for Case 2. In this
example the metrics are calculated for the inner one-sixth of the grid (indices 84:115,
84:115, and 0:31, in x, y and z respectively), which is the appropriate sub-section
of the grid for comparison with Case 1. The metrics are significantly improved by
comparison with Case 1. The reason is that a smaller fraction of field lines originating
at the poles leave the computational grid by the side or top boundaries.

4. Conclusions

This paper presents improvements to a method for calculating nonlinear force-free
fields (Wheatland, 2006). The modified approach uses a novel solution to Poisson’s
equation in 3-D using 2-D Fourier transforms (Section 2.3). The advantage of this
approach, rather than the original approach using 3-D Fourier transforms, is that
the arrays holding the field values are halved in size. This permits the method to
be applied to larger grids, which is important given the advent of high resolution
vector magnetic field data from new solar observing instruments, including the Solar
Optical Telescope on Hinode (Shimizu, 2004), and the upcoming Helioseismic and
Magnetic Imager on the Solar Dynamics Observatory. The method of solution of
Poisson’s equation is analogous to the method of solution of the Helmholtz equation
commonly used to calculate linear force-free fields (e.g. Nakagawa and Raadu, 1972;
Alissandrakis, 1981).

The new method is demonstrated in application to linear force-free test cases
with isolated patches of non-zero Bn, the normal component of the field in the
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(a) (b)

Figure 2. Test Case 2: Panel (a) shows the linear force-free field, and panel (b) shows the
nonlinear force-free reconstruction.

boundary. The boundary conditions for nonlinear calculations are Bn together with
the force-free parameter α specified over the region with Bn > 0 (or the region
where Bn < 0). Hence our test cases have localized boundary conditions on both Bn

and Jn = αBn/µ0, and so are suitable test cases for nonlinear force-free methods.
In particular the method is applied to a bipole pillbox configuration. The nonlinear
method provides an approximate reconstruction of the test field. It does not perfectly
reproduce the field because points r on the computational grid threaded by field lines
which leave the grid via the side or top boundaries are assigned α(r) = 0. In this
way the nonlinear force-free method addresses the problem of the missing information
associated with the boundary conditions on field and current outside of the specified
boundary region. This example highlights a general problem: all nonlinear force-
free methods (and indeed potential, and linear force-free methods) must make some
assumptions and approximations to deal with missing boundary information.

The procedure of assigning α(r) = 0 at points threaded by field lines which leave
the side or top of the grid is not the only possible way to deal with the problem of
missing boundary information. For example, another self-consistent procedure (i.e.
one ensuring ∇·J = 0) would be to assume α(r) is spatially periodic in x and y with
period corresponding to the lengths of the sides of the padded boundary region used
in the Fourier solutions. In principle this would permit α(r) to be determined for
points threaded by field lines which connect at only one end to the lower boundary by
extending the field line tracing to allow crossing of the boundaries. This would permit
a more accurate reconstruction in the case of the linear force-free solutions considered
in Section 3, because the test case solutions are themselves periodic [the test case
solutions are the Alissandrakis (1981) discrete Fourier solutions]. However, the exact
solution would not be reproduced even in these cases because some field lines do not
connect to the lower boundary at either end. We do not pursue this idea, because
in general it assumes an artificial periodicity, and it is not clear to what extent it
would be useful for reconstructions based on real solar data. We consider that the
present handling of assignment of α(r) to be an appropriate, simple solution to the
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problem of the ‘missing information’ presented by field lines which connect outside
of the boundary region in the solar reconstruction problem. We note that it does not
imply restrictions of balanced flux or current in application to real magnetograms.
Real magnetograms may have current-carrying field lines which leave the region for
which boundary values are available: we are simply ignoring that current, because
to model it accurately requires information which is unavailable.

The present method is a promising candidate for modelling coronal magnetic fields
from spectro-polarimetrically derived solar boundary data, in particular because of
its speed [in common with the Wheatland (2006) method, the time taken scales as
N4 for a calculation on a grid with N3 points, making it at least as fast as any other
method]. However, high resolution data will still require long computation times, and
parallelization is desirable. The code used here is parallelized using OpenMP, for use
on shared memory parallel computers (Chandra et al., 2001). The method is also well
suited to parallelization for distributed memory architectures, e.g. using MPI (Gropp,
Lusk, and Skjellum, 1999). The two steps in current-field iteration — solution of
Equation (3) and solution of Equation (4) — may both be parallelized in simple
ways. Specifically, in solving Equation (3) the 2-D Fourier transforms for different
values of z on the grid may be performed in parallel, and in solving Equation (4),
the field line tracing from different points on the grid may be performed in parallel.
These approaches may be implemented using either OpenMP or MPI. In future an
MPI version of the code will be written, to permit large-scale parallelization.

In a recent test of nonlinear force-free methods on a solar-like test case (Metcalf
et al., 2007), the two best performing methods were the present method and the
optimization method (Wheatland, Sturrock, and Roumeliotis, 2000; Wiegelmann,
2004). The two methods appear to have various advantages and disadvantages. Op-
timization is comparably fast, and in particular has been implemented with an N4

scaling for computation time (Inhester and Wiegelmann, 2006). A possible advantage
of the present method is that the optimization method uses all three components of
the vector field in the boundary, in which case the boundary value problem is not
well-posed (Amari, Boulmezaoud, and Aly, 2006). This problem is not important for
test cases with consistent boundary data, but is likely to be important in applica-
tion to real data. However, the ‘preprocessing’ procedure appears to go some way
towards solving this problem (Wiegelmann, Inhester, and Sakurai, 2006; Metcalf
et al., 2007), and conversely it may be argued that the present method relies on
accurate determination of boundary values of α, which is difficult with present data.
A possible advantage of the present method is that it may be applied to cases for
which vector magnetic field values are available over only one polarity (provided Bn

is available on the other polarity). In general it may be said that the application
to solar boundary data is a difficult problem and the utility of methods is hard to
anticipate without actual numerical experimentation. It will also be hard to assess the
success of reconstructions. In this regard the ability to choose between the positive
polarity and negative polarity of the boundary field for the specification of α(r) may
be seen as an additional advantage of the present method, in that it allows a simple
test of the dependence of the reconstruction on the choice of boundary conditions
on current.
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