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ABSTRACT

A stochastic model for the energy of a flaring solar active region is presented, generalising and
extending the approach of Wheatland & Glukhov (1998). The probability distribution for the free
energy of an active region is described by the solution to a master equation involving deterministic
energy input and random jump transitions downwards in energy (solar flares). It is shown how two
observable distributions, the flare frequency-energy distribution and the flare waiting-time distribu-
tion, may be derived from the steady-state solution to the master equation, for given choices for the
energy input and for the rates of flare transitions. An efficient method of numerical solution of the
steady-state master equation is presented. Solutions appropriate for flaring, involving a constant rate
of energy input and power-law distributed jump transition rates, are numerically investigated. The
flare-like solutions exhibit power-law flare frequency-energy distributions below a high energy rollover,
set by the largest energy the active region is likely to have. The solutions also exhibit approximately
exponential (i.e. Poisson) waiting-time distributions, despite the rate of flaring depending on the free
energy of the system.

Subject headings: Sun: flares — Sun: corona — Sun: activity — Methods: statistical

1. INTRODUCTION

Solar active regions are the sites of occurrence of most
solar flares. Large active regions may persist for sev-
eral solar rotations, and produce dozens of significant
flares during a transit of the disk (Richardson 1951). The
largest flares are believed to involve the release of more
than 1027 J of stored magnetic energy, the energy ap-
pearing in accelerated particles, heating, bulk motion of
material, and radiation (Hudson 1991). The process un-
derlying flares is accepted to be magnetic reconnection,
although the details of the process remain the subject of
study (Priest & Forbes 2002).

The dynamical energy balance of solar active regions
presents challenges to our understanding. The energy
liberated in flares is thought to be excess or ‘free’ mag-
netic energy associated with electric current systems in
the solar atmosphere, but the origin of the currents,
and hence the source of the energy, is not well under-
stood (McClymont & Fisher 1987; Tandberg-Hanssen &
Emslie 1988; Leka et al. 1996; Wheatland 2000a; Schri-
jver et al. 2005). Two popular pictures for energy sup-
ply are first that existing coronal magnetic structures
are twisted and sheared by photospheric motions, pro-
ducing currents, and second that new current-carrying
magnetic flux emerges through the photosphere. These
mechanisms suggest that energy supply to an active re-
gion may be described as a continuous process, driven by
slow photospheric and sub-photospheric motions. In con-
trast, flare energy release is rapid and unexpected. An
important point is that the size of the downwards jump
in energy associated with a flare may be very large, by
comparison with the amount of stored active region en-
ergy.

The understanding of active region energy balance is
hampered by the inability to calculate coronal magnetic
energy. In principle the magneto-hydrodynamic (MHD)
virial theorem permits the calculation of magnetic en-

ergy from vector field values inferred in the chromosphere
subject to the assumption that the field is everywhere
force free (e.g. Metcalf et al. 2005). However few chro-
mospheric vector field determinations are made, and the
reliability of the method is unknown. Methods for model-
ing coronal magnetic fields from photospheric or chromo-
spheric boundary conditions are being developed (Met-
calf et al. 2008; Schrijver et al. 2008), and these may
permit estimation of coronal magnetic energy. There has
also been recent progress in methods for estimating the
rate of supply of energy to an active region directly from
observations (e.g. Welsch et al. 2007). For example, in
ideal MHD the Poynting flux is S = (−u × B) × B/µ0,
where u is the fluid velocity and B is the magnetic field,
and in principle this quantity may be estimated at the
photosphere from observations.

Although we lack detailed quantitative information
about the rate of energy supply to, and the energy stored
in, active regions, we do have detailed information about
solar flare occurrence. The energy released in flares may
be estimated (albeit subject to some error), and the rate
of occurrence of flares is observed. Two related statistical
properties of flares – the frequency-energy distribution,
and the distribution of times between events – have been
studied in some detail, as summarized below.

Studies of the frequency-energy distribution show that
it is a power law over many decades in energy (Hudson
1991; Crosby, Aschwanden, & Dennis 1993; Aschwanden,
Dennis, & Benz 1998). Specifically the distribution may
be written

N (E) = AE−γ , (1)

where N (E) is the number of flares per unit time and
per unit energy E, the factor A is a (time-dependent)
measure of the total flaring rate, and γ ≈ 1.5. Typically
this distribution is determined for flares from all active
regions on the Sun over some period of time, but it also
appears to apply to individual active regions (Wheatland
2000b), which suggests that the power law is intrinsic to
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the flare mechanism. A popular model explaining the
power law is the avalanche model (Lu & Hamilton 1991;
Charbonneau et al. 2001), in which the magnetic field in
the corona is assumed to be in a self-organized critical
state, and subject to avalanches of small-scale reconnec-
tion events.

There has been considerable interest in the flare
waiting-time distribution, and more generally in waiting-
time distributions for what they reveal about underly-
ing physics in a variety of systems (Sánchez, Newman
& Carreras 2002). Determinations of flare waiting-time
distributions have given varied results (Pearce, Rowe &
Yeung 1993; Biesecker 1994; Wheatland, Sturrock & Mc-
Tiernan 1998; Boffetta et al. 1999; Moon et al. 2001;
Wheatland 2001; Moon et al. 2002). The results suggest
that the observed distribution depends on the particular
active region and on time, and that it is also influenced
by event definition and selection procedures (Wheatland
2001; Buchlin, Galtier, & Velli 2005; Paczuski, Boettcher,
& Baiesi 2005; Baiesi, Paczuski, & Stella 2006). For some
active regions, the distribution appears to be consistent
with a simple Poisson process, i.e. independent events oc-
curring at a constant mean rate (Moon et al. 2001). The
corresponding waiting-time distribution is exponential.
Other active regions show time-variation in the flaring
process, and flare occurrence may be approximated by a
piecewise constant, or more generally time-varying Pois-
son process (Wheatland 2001). On longer time scales a
power-law tail is observed for events from the whole Sun
(Boffetta et al. 1999). This may be accounted for in terms
of a time-dependent Poisson model (Wheatland & Litvi-
nenko 2002), although some authors have argued that
the power law has fundamental significance (Lepreti et
al. 2001). We note that the waiting-time distribution has
often been considered in isolation from other flare statis-
tics, in particular the frequency-energy distribution.

To understand the statistics of flare occurrence, it is
desirable to have a general theory for the energetics of
an active region, relating the free energy of the active re-
gion to the observed frequency-energy and waiting-time
distributions. Rosner & Vaiana (1978) presented the first
model of this kind, which was analogous to Fermi accel-
eration. In this model active regions experience expo-
nential growth in free energy between flares which oc-
cur as a Poisson process in time, depleting all accumu-
lated energy. This gives a power-law flare frequency-
energy distribution for large energies, and presupposes
Poisson occurrence. Litvinenko (1994; 1996) generalized
the model to incorporate different rates of supply of en-
ergy to the system, but the Litvinenko models retained
the feature that each flare releases all of the free energy.
This aspect of the Rosner & Vaiana (1978) model was
criticized by Lu (1995). Wheatland & Glukhov (1998)
introduced a model permitting arbitrary changes in free
energy at each flare. The model assumes the free en-
ergy E of an active region increases secularly between
jump transitions downward in energy (flares), which oc-
cur at a rate α(E, E′) for jumps from E to E′, per unit
energy. A master equation describes the steady-state en-
ergy balance, and the solution of this equation is the
probability distribution P (E) for the free energy. The
flare frequency-energy distribution is given by the con-

volution

N (E) =

∫ ∞

E

P (E′)α(E′, E′ − E)dE′. (2)

Wheatland & Glukhov (1998) investigated solutions to
the master equation for constant energy input and for
a choice of transition rates α(E, E′) ∼ (E − E′)−γ ,
which leads to power-law behavior N (E) ∼ E−γ (be-
low a high energy rollover set by the highest energy
an active region is likely to have). Wheatland &
Glukhov (1998) did not determine a waiting-time distri-
bution for the model. It was argued that the derived
power-law solutions are consistent with an avalanche-
type model, and avalanche models have simple Poisson
waiting-time statistics (Wheatland, Sturrock & McTier-
nan 1998; Sánchez, Newman & Carreras 2002). How-
ever, this presents a puzzle: the total rate of flaring in
the Wheatland & Glukhov (1998) model is given by

λ(E) =

∫ E

0

α(E, E′)dE′, (3)

which depends on the energy of the system. Hence it is
expected that the occurrence of flares is not strictly Pois-
son, since the occurrence of a flare changes the energy of
the system, and hence the instantaneous total rate of
flaring. Non-Poisson waiting-time statistics might then
be expected.

Recently Daly & Porporato (2007) demonstrated how
to determine steady-state waiting-time distributions for
continuous time processes with arbitrary jump transi-
tions. The Daly & Porporato (2007) theory is quite
general, applying to any system described by a single
time-dependent stochastic variable x(t) following a de-
terministic trajectory interrupted by positive or nega-
tive jumps of random timing and size. The probabil-
ity distribution P (x, t) for x(t) is described by a master
equation, and the waiting-time distribution for jumps
in the steady state may be obtained from the solution
to the steady-state master equation. Daly & Porporato
(2007) demonstrated the theory in application to simple
models for human attention, for voltage across a nerve
membrane, and for soil moisture content associated with
rainfall events. In each case the models were analytic, in-
volving simple solutions to the master equation. In this
paper the Daly & Porporato (2007) theory is applied to
the Wheatland & Glukhov (1998) model for active region
free energy, and waiting-time distributions are derived
for solutions of relevance to flares. The application of
the theory is relatively straightforward: the Wheatland
& Glukhov (1998) model is in the class of models con-
sidered by Daly & Porporato (2007), the time-dependent
stochastic variable being the active region energy E(t).
Minor modifications to the theory are required because
E is a positive definite quantity, and because the jump
transitions in E are always negative. A specific difficulty
in applying the theory is that for the power-law form for
rate transitions relevant for flares, the master equation
is not amenable to analytic solution. In this paper an
efficient numerical method of solution of the steady state
master equation is presented and applied. This paper
also considers a more general form for flare transition
rates than considered in Wheatland & Glukhov (1998).
The results resolve the puzzle outlined above concerning
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whether the model produces an exponential waiting-time
distribution.

The sections of the paper are as follows. Section 2
presents the model, starting with the time-dependent
master equation (§ 2.1). Section 2.2 shows how steady-
state waiting-time distribution may be obtained, § 2.3
presents simple analytic solutions illustrating the theory,
and § 2.4 considers the information provided by moments
of the master equation. Section 3 presents flare-like solu-
tions to the master equation, starting with a justification
of appropriate choices for the rates of transitions and for
the energy supply rate (§ 3.1). Section 3.2 describes the
numerical method, and § 3.3 presents the results. Sec-
tion 4 discusses the results, and their significance for un-
derstanding solar flares.

2. MODEL

2.1. Master equation

An active region is modeled as a system with free en-
ergy E(t) which evolves in time due to secular energy in-
put and jumps downward in energy at random times and
of random sizes. The system is described by the time-
dependent master equation (Van Kampen 1992; Gardiner
2004) for the probability distribution P (E, t) of the free
energy:

∂P (E, t)

∂t
=−

∂

∂E
[β(E, t)P (E, t)] − λ(E)P (E, t)

+

∫ ∞

E

P (E′, t)α(E′, E)dE′, (4)

where β(E, t) describes the energy input rate at time
t, α(E, E′) describes the rate of flare jumps from E to
E′, and λ(E) is the total rate of flaring, given by equa-
tion (3). The terms on the right hand side of equation (4)
describe the system gradually increasing in energy due to
energy input, falling to a lower energy due to a flare, and
falling from a higher energy due to a flare, respectively.
This is the time-dependent version of the master equa-
tion given in Wheatland & Glukhov (1998).

Following Daly & Porporato (2007), we note that the
system is also described by the stochastic differential
equation

dE

dt
= β(E, t) − Λ(E, t) (5)

where Λ(E, t) =
∑N(t)

i=1 ∆Eiδ(t − ti) describes accumu-
lated losses in energy due to flaring, δ(x) is the delta
function, and where the times ti are given by a state-
dependent Poisson process with occurrence rate λ[E(t)].
The jump amplitudes ∆E are distributed according to
the (state-dependent) distribution h(∆E, E), defined by

α(E, E − ∆E) = λ(E)h(∆E, E), (6)

so that
∫ E

0 h(∆E, E)d(∆E) = 1.

2.2. Steady-state waiting-time distribution

Daly & Porporato (2007) showed how — assuming a
steady state — the waiting-time distribution for the jump
transitions may be derived. In this section we briefly re-
iterate the theory, as it applies to the present model.

Consider a deterministic trajectory described by equa-
tion (5), starting at energy Es and ending at a higher

energy Ee, the instant before a jump occurs. The dis-
tribution pe(E) of final energies Ee is given by the rate
of jumping at a given energy divided by the mean total
rate of jumping, i.e.

pe(E) =
λ(E)P (E)

〈λ〉
, (7)

where P (E) is the steady-state solution to the master
equation (4) and

〈λ〉 =

∫ ∞

0

λ(E)P (E)dE (8)

is the mean total rate. The distribution ps(E) of starting
energies Es is then given by pe(E) together with the
distribution of jumps h(∆E, E):

ps(E) =

∫ ∞

E

pe(E
′)h(E′ − E, E′)dE′, (9)

which using equations (6) and (7) may be rewritten as

ps(E) =
1

〈λ〉

∫ ∞

E

P (E′)α(E′, E)dE′. (10)

The waiting-time distribution is given by

pτ (τ) = −
dF

dτ
(11)

with

F(τ) =

∫ ∞

0

pλ(E, τ)dE, (12)

where pλ(E, t) is the solution to

∂pλ(E, t)

∂t
= −

∂

∂E
[β(E)pλ(E, t)] − λ(E)pλ(E, t) (13)

with the initial condition pλ(E, 0) = ps(E). Equa-
tion (13) describes the evolution of the system before a
flaring jump occurs, i.e. over the deterministic trajectory
starting at energy Es and ending at energy Ee.

A simpler form for the waiting-time distribution may
be obtained when β(E) = β0, a constant. Solution of
equation (13) by characteristics then gives

pλ(E, t) = ps(E − β0t) exp

{

−

∫ t

0

λ [E − β0(t − s)] ds

}

,

(14)
assuming E ≥ β0t, and pλ(E, t) = 0 otherwise. In this
case

F(τ) =

∫ ∞

0

ps(u)f(u, τ)du (15)

where

f(u, τ) = exp

[

−

∫ τ

0

λ(β0s + u)ds

]

, (16)

so the waiting-time distribution is

pτ (τ) =

∫ ∞

0

ps(u)λ(β0τ + u)f(u, τ)du. (17)
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2.3. Steady-state analytic solutions

Two analytic examples illustrate the application of the
theory. The examples are not relevant for flares, because
they do not produce power-law frequency-energy distri-
butions, but they show how Poisson and non-Poisson
waiting-time distributions may be obtained.

The case β(E) = β0 and α(E, E′) = α0 (where α0

and β0 are constants) was considered by Wheatland &
Glukhov (1998). In this case equation (3) gives λ(E) =
α0E, so the total rate of jumps is energy dependent and
the waiting-time distribution will not correspond to a
simple Poisson process. The analytic solution to the
steady-state master equation is

P (E) = aEe−
1
2

aE2

, (18)

with a = α0/β0, and from equation (2) the frequency-
energy distribution for jumps is a Gaussian:

N (E) = α0e
− 1

2
aE2

. (19)

From equation (8) the mean total rate is 〈λ〉 = (α0β0)
1/2

,
and using equations (7) and (10) the distributions of end-
and start-energies for deterministic trajectories are

pe(E) =

(

2

π

)1/2

a3/2E2e−
1
2

aE2

(20)

and

ps(E) =

(

2

π

)1/2

a1/2e−
1
2
aE2

(21)

respectively. Using equations (17) and (21) it follows
that the waiting-time distribution is also a Gaussian:

pτ (τ) =

(

2α0β0

π

)1/2

e−
1
2
α0β0τ2

. (22)

As a second example, we consider the case β(E) = β0

and λ(E) = λ0 (where β0 and λ0 are constants). Since
the total rate is constant the waiting-time distribution
must be

pτ (τ) = λ0e
−λ0τ , (23)

i.e. jumps occur in time as a simple Poisson process.
From equation (3) this case requires α(E, E′) = λ0/E.
The corresponding solution to the steady-state master
equation is

P (E) = b2Ee−bE , (24)

with b = λ0/β0, and from equation (2) the frequency-
energy distribution of jumps is exponential:

N (E) = bλ0e
−bE . (25)

The mean total rate of jumps given by equation (8) is
〈λ〉 = λ0, and using equations (7) and (10) we have
pe(E) = b2Ee−bE and ps(E) = be−bE . From equa-
tion (17) it follows that the waiting-time distribution is
indeed given by equation (23).

2.4. Moments of the master equation

Moments of the master equation give useful informa-
tion about the global behavior of solutions (Wheatland
& Litvinenko 2001).

The zeroth moment, obtained by integrating equa-
tion (4) over all energies, gives the trivial result

d

dt

∫ ∞

0

P (E, t)dE = 0, (26)

i.e. normalization is preserved, provided β(E, t)P (E, t)
goes to zero as E → 0 and E → ∞.

The first moment, obtained by multiplying equa-
tion (4) by E and integrating over all energies, gives the
simple statement of global energy balance:

d

dt
〈E〉 = 〈β〉 − 〈r〉, (27)

where for any quantity f = f(E, t), the mean 〈f〉 is
defined by

〈f〉 =

∫ ∞

0

f(E, t)P (E, t)dE, (28)

and where

r(E) =

∫ E

0

(E − E′)α(E, E′)dE′ (29)

is the total rate of energy loss at energy E. Equation (27)
requires β(E, t)P (E, t) to go to zero as E → 0 and E →
∞. In the steady state equation (27) gives

〈β〉 = 〈r〉. (30)

3. FLARE-LIKE SOLUTIONS

In the following we consider solutions to the steady-
state master equation which may be of relevance to solar
flares.

3.1. Choices appropriate for flares

We restrict attention to the case β(E) = β0, a con-
stant. The motivation is that active regions are exter-
nally driven, i.e. the energy is supplied from the sub-
photosphere by external processes. In the absence of a
back reaction, it is then expected that the energy supply
rate does not depend on the state of the system. In pass-
ing we note that in general the energy supply rate may
depend on time. However, in this section we consider
only steady-state solutions to the master equation. We
return to this point in § 4.

We consider the form

α(E, E′) = α0E
δ(E − E′)−γθ(E − E′ − Ec) (31)

for the flare transition rate, where Ec is a low-energy
cutoff, and θ(x) is the step function. The case δ = 0
was considered in Wheatland & Glukhov (1998). The
motivation for equation (31) is that it may describe an
avalanche-type system, in which energy transitions are
intrinsically power-law distributed. The power law is as-
sumed to originate in the microphysics of the flare pro-
cess, and must be assumed at the level of this model.
[This is in contrast to models which attempt to account
for the power law, e.g. Rosner & Vaiana (1978).] The
low-energy cutoff Ec is needed to ensure λ(E) is finite.
The Eδ factor represents a possible dependence of the
transition rate on the energy of the system. It is plau-
sible that an avalanche-type system with more energy is
more likely to contain unstable sites, and hence will flare
at a higher rate. In the following we take γ = 1.5 in
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every instance, and consider two cases: δ = 0, following
Wheatland & Glukhov (1998); and δ = 1. The choice of
transition rates (31) leads to the total flaring rate

λ(E) =
α0

γ − 1
Eδ

(

E−γ+1
c − E−γ+1

)

. (32)

Hence the rate of occurrence of flares is energy-
dependent, and the waiting-time distribution will not
correspond to a simple Poisson process, as pointed out
in § 1.

Application of the first moment with the choice of tran-
sition rates (31) leads to a simple estimate for the mean
energy of the system (Wheatland & Litvinenko 2002).
Specifically, from equation (29) we have

r(E) ≈
α0

2 − γ
Eδ+2−γ , (33)

for E ≫ Ec. Taking averages and making the approxi-
mation 〈Eδ+2−γ〉 ≈ 〈E〉δ+2−γ together with 〈β〉 = β0 in
equation (30) gives

〈E〉 ≈

(

2 − γ

α0/β0

)
1

δ+2−γ

. (34)

Substituting equation (31) into equation (2) leads to
the form for the flare frequency-energy distribution

N (E) = α0E
−γ

∫ ∞

E

(E′)
δ
P (E′)dE′ (35)

for E ≥ Ec. Hence it follows that the frequency-energy
distribution will be a power law with index γ up to ener-
gies E at which P (E) becomes very small. Equation (34)
provides a crude estimate (a lower bound) for the energy
at which the frequency-energy distribution is expected to
depart from power law behavior.

3.2. Numerical method

The steady-state master equation may be non-
dimensionalized by introducing new variables E = E/E0,
P = PE0, t = β0t/E0, and α = E2

0α/β0, where E0 is a
chosen scale for energy. [For the solutions corresponding
to equation (31) we take E0 = Ec.] This procedure gives

dP

dE
+ λP −

∫ ∞

E

P (E
′
)α(E

′
, E)dE

′
= 0, (36)

where

λ =

∫ E

0

α(E, E
′
)dE

′
. (37)

Hereafter we assume non-dimensional equations, but
omit the bars.

Equation (36) is linear in P (E), and hence may be
solved by discretizing in energy and solving a coupled
system of linear equations. These equations must be
supplemented by the normalization condition on P (E).
Direct back-substitution provides an efficient method of
solution, and the details of the procedure are given in Ap-
pendix A. In Wheatland & Glukhov (1998) the steady-
state master equation was solved by a relaxation proce-
dure, but the approach given here is more numerically
efficient.

The flare frequency-energy distribution is obtained
from the solution for P (E) via numerical evaluation of

Fig. 1.— Numerical solution to the steady-state master equation
for the case δ = 0, γ = 1.5, and α0 = 0.1, one of the cases consid-
ered in Wheatland & Glukhov (1998). Upper panel: probability
distribution for free energy P (E); middle panel: flare frequency-
energy distribution N (E); lower panel: flare waiting-time distribu-
tion pτ (τ).

equation (2). The waiting-time distribution is similarly
determined via numerical evaluation of equation (17),
using an analytic form for f(u, τ) obtained from equa-
tion (16). All numerical integrations use the extended
trapezoidal rule. The numerical solution was tested on
the analytic cases given in § 2.3.

3.3. Results

First we consider the case δ = 0, following Wheatland
& Glukhov (1998). Figure 1 illustrates the numerical so-
lution of the steady-state master equation (36) for the
case α0 = 0.1, which is one of the two cases considered
in Wheatland & Glukhov (1998). The upper panel shows
the probability distribution P (E) for active region energy
(as a linear-log plot), the middle panel shows the flare
frequency-energy distribution N (E) (as a log-log plot),
and the lower panel shows the waiting-time distribution
pτ (τ) (as a log-linear plot). As explained in § 3.1, the
frequency-energy distribution is expected to be a power
law with index γ = 1.5 below energies at which P (E)
becomes small, and the expression (34) provides a lower
bound for the departure from power-law behavior. The
lower bound is shown in the upper and middle panels
by a vertical line. The upper and middle panels confirm
the results of Wheatland & Glukhov (1998). The lower
panel shows the waiting-time distribution pτ (τ) (solid
curve) as well as the Poisson distribution 〈λ〉e−〈λ〉τ (dot-
ted line) corresponding to the mean rate of flaring im-
plied by the form of λ(E) and the solution for P (E) [see
equation (8)]. Note that the units for time in the lower
panel are Ec/β0, following the non-dimensionalization in
§ 3.2. The waiting-time distribution for the model is ap-
proximately Poisson, although there is a slight deficiency
of long waiting-times by comparison with the Poisson dis-
tribution.

Figure 2 shows the case δ = 0 and α0 = 0.02, which
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Fig. 2.— Numerical solution to the steady-state master equation
for the case δ = 0, γ = 1.5, and α0 = 0.02, one of the cases consid-
ered in Wheatland & Glukhov (1998). Upper panel: probability
distribution for free energy P (E); middle panel: flare frequency-
energy distribution N (E); lower panel: flare waiting-time distribu-
tion pτ (τ).

is the other case considered by Wheatland & Glukhov
(1998), in the same format as Figure 1. For a lower
value of α the system flares less often and hence is more
likely to have larger energy. Hence the distribution P (E)
shown in the upper panel is shifted to higher energy and
has a higher mean. The flare frequency-energy distri-
bution (middle panel) is a power law over more decades
in energy than for the case α0 = 0.1. These results are
consistent with the findings of Wheatland & Glukhov
(1998). The lower panel shows the waiting-time distri-
bution (solid curve) as well as the Poisson distribution
corresponding to 〈λ〉 (dotted), although the two curves
are almost indistinguishable.

The results in Figures 1 and 2 suggest that the δ = 0
model has a waiting-time distribution which is close to
being strictly Poisson (exponential), and that the ap-
proximation becomes better for smaller values of α0.
This may be understood in terms of the expression (32).
For E ≫ Ec the total rate is λ(E) ≈ α0E

−γ+1
c /(γ − 1),

which is constant, in which case a Poisson waiting-time
distribution is expected. For smaller values of α0 the
system is more likely to have larger energy, and hence
the approximation E ≫ Ec will be better. Figure 3 il-
lustrates this explanation for the case δ = 0, α0 = 0.02.
The solid curve shows the total rate as a function of en-
ergy, and the dashed line shows the mean total rate 〈λ〉.
The energy distribution P (E) is shown, with arbitrary
normalization, by the dotted curve. We see that, over
the range of energy for which the distribution P (E) is
substantial, the total rate is approximately constant and
equal to the mean total rate. These results resolve the
puzzle identified in § 1: the waiting-time distribution for
the model is not strictly Poisson, but is a good approxi-
mation to an exponential.

Next we consider the case δ = 1, to examine what hap-
pens when the rate of flare transitions increases with the

Fig. 3.— The total rate of flaring λ(E) versus energy (solid
curve) for the case δ = 0, γ = 1.5, and α0 = 0.02, and the mean
total rate 〈λ〉 (dashed line). The energy distribution P (E) is also
shown, with an arbitrary normalization (dotted curve).

energy of the system. Figures 4 and 5 show the cases
α0 = 10−3 and α0 = 10−5 respectively, in the same for-
mat as Figures 1 and 2. First consider Figure 4. The
energy distribution P (E) shown in the upper panel is
qualitatively similar to the δ = 0 case, although the dis-
tribution declines more rapidly at higher energies, so that
it is more skewed in a linear-log representation. Since the
rate of transitions increases with energy, the system is
less likely to be found at very large energies, and this ex-
plains the rapid decline. The middle panel shows the flare
frequency-energy distribution N (E), which is a power
law with index γ below a high energy rollover. The esti-
mate (34) for the mean of the distribution (vertical line)
provides a lower bound for the departure from power
law behavior. The lower panel shows the waiting-time
distribution pτ (τ), and the Poisson distribution implied
by 〈λ〉. The waiting-time distribution is approximately
Poisson, but has a deficit of long waiting times. Fig-
ure 5 illustrates the case with reduced flare transition
rates. The distribution P (E) (upper panel) is shifted to
higher energies, and is again quite skewed in the linear-
log representation. The frequency-energy distribution
N (E) (middle panel) is a power law over more decades
in energy. The waiting-time distribution pτ (τ) (lower
panel) is again approximately exponential, but departs
somewhat from the Poisson model, including showing an
excess of long waiting times.

The results in the lower panels of Figures 4 and 5 sug-
gest that, for the δ = 1 model, the waiting-time dis-
tribution is approximately exponential but shows some
departure from the Poisson case depending on the param-
eters of the model. The approximate Poisson behavior
is perhaps surprising because in this case the total rate
of flaring [given by equation (32)] varies approximately
linearly with E (for E ≫ Ec). Figure 6 illustrates this
for the case δ = 1, α0 = 10−5, using the same format
as Figure 3. The total rate (solid curve) increases sub-
stantially over the range of energies the system is likely
to have [the dotted curve shows P (E)], and may be sub-
stantially different to 〈λ〉 (the dashed line). However,
pτ (τ) is defined by a complicated average of the rate
over energy, which is different for different waiting times
[see equation (17)], and the numerical results show that
the resulting waiting-time distribution is approximately
Poisson.
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Fig. 4.— Numerical solution to the steady-state master equa-
tion for the case δ = 1, γ = 1.5, and α0 = 10−3. Upper panel:
probability distribution for free energy P (E); middle panel: flare
frequency-energy distribution N (E); lower panel: flare waiting-
time distribution pτ (τ).

Fig. 5.— Numerical solution to the steady-state master equa-
tion for the case δ = 1, γ = 1.5, and α0 = 10−5. Upper panel:
probability distribution for free energy P (E); middle panel: flare
frequency-energy distribution N (E); lower panel: flare waiting-
time distribution pτ (τ).

4. DISCUSSION

A stochastic model is presented for the free magnetic
energy of a flaring solar active region. The energy of
an active region is assumed to grow deterministically be-
tween random flare events at which the energy jumps
downwards by an amount equal to the flare energy.
Flares jumps occur from energy E to E′ with a rate
α(E, E′) per unit time and per unit energy, and energy
input occurs at a rate β(E). Active region energy is

Fig. 6.— The total rate of flaring λ(E) versus energy (solid
curve) for the case δ = 1, γ = 1.5, and α0 = 0.02, and the mean
total rate 〈λ〉 (dashed line). The energy distribution P (E) is also
shown, with an arbitrary normalization (dotted curve).

then described by a distribution P (E) which is the steady
state solution to a master equation. This distribution de-
termines two observable distributions, namely the flare
frequency-energy distribution, and the waiting-time dis-
tribution. The model generalizes and extends the ap-
proach of Wheatland & Glukhov (1998). Novel aspects
of the work presented here include the determination of
waiting-time distributions [following general theory pre-
sented by Daly & Porporato (2007)], consideration of a
more general form for the rate of flare transitions, and
introduction of an efficient method of numerical solution
of the steady-state master equation.

The form α(E, E′) = α0E
δ(E−E′)−1.5 for flare transi-

tions is investigated, for the cases δ = 0 and δ = 1. The
case δ = 0 was considered by Wheatland & Glukhov
(1998), motivated by the avalanche model. For both
cases the model is shown to produce power-law flare
frequency-energy distributions below a rollover at high
energies, due to the active region having a finite energy.
For both cases the waiting-time distribution is approx-
imately exponential (Poisson). For the case δ = 0 this
may be understood in that the total rate λ(E) is approx-
imately constant for E ≫ Ec, which becomes a good ap-
proximation for small α0, when the system is more likely
to be found at large energies. This result is consistent
with the interpretation of this model as avalanche-like,
since avalanche models have simple Poisson statistics.
For the case δ = 1 the interpretation is more complicated,
because the total rate varies approximately linearly with
energy. However, the waiting-time distribution is deter-
mined by an average of rates over the possible energies of
the active region, and numerical evaluation shows that
the result is approximately exponential.

The general model introduced in § 2.1 includes time
dependence in the driving rate, but we have focused on
the steady state throughout this paper. Many active re-
gions exhibit large variations in the rate of flaring during
a transit of the disk (Wheatland 2001). This behavior is
often linked e.g. with the emergence of new magnetic flux
(Romano & Zuccarello 2007), which suggest that it is a
response to an increased rate of driving. Hence we have
neglected an important aspect of active region energet-
ics. Time-dependent driving will influence the observed
waiting-time distribution. In the simplest case time vari-
ation might be represented by a piecewise constant vari-
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ation in the driving rate. If the system adjusts suitably
quickly to changes in driving, the steady state solution
applies to each piece. The waiting-time distribution is
then a weighted sum over the steady-state distributions
applying to each piece (Wheatland & Litvinenko 2001).
Based on the results presented in this paper, the waiting-
time distribution for active regions is expected to be ap-
proximately exponential provided the rate of driving of
the system is constant. If the rate of driving is time
varying, the distribution will depart from exponential.
A time-dependent model will be investigated in future
work.

One shortcoming of the model is that it does
not describe energy loss from the system by mech-
anisms other than flaring, for example loss due to
flux submergence, or quasi-steady background dissipa-
tion. However, a simple generalization of the mas-
ter equation permits this. Specifically, if the secu-
lar energy ‘input’ is replaced by small jumps in en-
ergy (which may be positive or negative), then the en-
ergy gains and losses may be represented by Fokker-
Planck terms in a generalized master or Chapman-
Kolmogorov equation. Specifically, the secular energy
increase term −∂ [β(E, t)P (E, t)] /∂E on the right hand
side of equation (4) may be replaced by a pair of terms
−∂ [β1(E, t)P (E, t)] /∂E + 1

2∂2 [β2(E, t)P (E, t)] /∂E2,
where the coefficients βi(E, t), i = 1, 2 represent first
and second moments of energy changes associated with
the small jump transitions (Van Kampen 1992; Gardiner
2004). It is straightforward to solve the resulting gen-
eralize master equation by discretization and solution
of the resulting linear system, extending the approach

presented in the Appendix. However, in this case the
Daly & Porporato (2007) method for determining the
steady-state waiting-time distribution needs to be modi-
fied. This model will be investigated more completely in
future work.

The results presented here show how it is possible
to construct a model for active region energetics which
directly predicts observable flare statistics, namely the
flare frequency-energy, and waiting-time distributions.
In principle the observations may be used to determine
the energy supply and flare energy release terms in the
model, i.e. β(E, t) and α(E, E′). However, the observa-
tions are not really precise or unambiguous enough to
identify these terms with certainty. In particular, the
interpretation of the waiting-time distribution is compli-
cated by the time dependence of the energy supply. The
situation would be improved by an ability to estimate
coronal free energy and the rate of supply of energy to
active regions from observations. Reliable methods for
estimating these quantities are the subject of current re-
search (Welsch et al. 2007; Schrijver et al. 2008). If such
methods are developed, the theory developed here will be
of greater significance. It may provide valuable insight
into the flare mechanism, as well as being of practical
benefit for flare prediction.

The author thanks Ian Craig for pointing out that the
master equation can be solved as a linear system by back-
substitution, and a referee for helpful comments which
improved the presentation.

APPENDIX

NUMERICAL SOLUTION OF THE STEADY-STATE MASTER EQUATION

Discretizing equation (36) at energies Ei = i∆ gives

Pi+1 − Pi−1

2∆
+ λiPi −

1

2
∆

N−2
∑

j=i

(Pjαj,i + Pj+1αj+1,i) = 0 (1)

where

λi =
1

2
∆

i−1
∑

j=0

(αi,j + αi,j+1) (2)

and where Pi = P (Ei) and αi,j = α(Ei, Ej). Centered differencing is used for the derivative, and the extended
trapezoidal rule is used for the integrals. Equation (1) with i = 1, 2, ..., N − 1 (and the assumption PN = 0) may be
supplemented by the normalization condition

1

2
∆

N−2
∑

i=0

(Pi + Pi+1) = 1 (3)

to give N linear equations in the N unknowns P0, P1, P2, ..., PN−1.
The resulting linear system may be solved efficiently by back-substitution as follows. Equation (1) may be re-written

Pi−1 = Pi+1 + 2∆



λiPi −
1

2
∆

N−2
∑

j=i

(Pjαj,i + Pj+1αj+1,i)



 , (4)

which expresses Pi−1 in terms of Pi, Pi+1, Pi+2, ..., PN−2. Hence if we assume a value for PN−1, we can apply
equation (4) to solve for PN−2, and then apply it again to solve for PN−3, etc. In this way we can determine
PN−1, PN−2, PN−3, ..., P0 up to an unknown normalization factor. The factor is determined by applying equation (3).
Specifically, the solution is given by P ′

i (with i = 0, 1, 2, ..., N − 1), where

P ′
i =

Pi

1
2∆

∑N−2
i=0 (Pi + Pi+1)

. (5)
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