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Abstract A Monte-Carlo approach to solving a stochastic jump transition model
for active-region energy (Wheatland and Glukhov, Astrophys. J. 494, 1998;
Wheatland, Astrophys. J. 679, 2008) is described. The new method numerically
solves the stochastic differential equation describing the model, rather than the
equivalent master equation. This has the advantages of allowing more efficient
numerical solution, the modelling of time-dependent situations, and investigation
of details of event statistics. The Monte-Carlo approach is illustrated by appli-
cation to a Gaussian test case, and to the class of flare-like models presented in
Wheatland (2008), which are steady-state models with constant rates of energy
supply, and power-law distributed jump transition rates. These models have
two free parameters: an index (δ), which defines the dependence of the jump
transition rates on active-region energy, and a non-dimensional ratio (r) of total
flaring rate to rate of energy supply. For r ! 1 the non-dimensional mean energy
〈E〉 of the active-region satisfies 〈E〉 $ 1, resulting in a power-law distribution
of flare events over many decades in energy. The Monte-Carlo method is used to
explore the behavior of the waiting-time distributions for the flare-like models.
The models with δ %= 0 are found to have waiting times which depart signifi-
cantly from simple Poisson behavior when 〈E〉 $ 1. The original model from
Wheatland and Glukhov (1998), with δ = 0 (no dependence of transition rates
on active-region energy), is identified as being most consistent with observed
flare statistics.

Keywords: Active Regions, Models; Corona, Models; Flares, Models; Flares,
Microflares and Nanoflares

1. Introduction

Solar flares are explosive events in the solar corona, involving the release of en-
ergy stored in active-region magnetic fields. Active regions are dynamic, evolving
in time due to the emergence and submergence of magnetic flux from the sub-
photosphere, stressing by photospheric motions, and the occurrence of flares. It
is of interest to understand the dynamical energy balance of active regions.
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2 M. Wheatland

Flares exhibit a wide range of energies. The largest flares may involve the
release of up to 1027 J of energy, and are associated with large-scale expul-
sions of material from the corona (Coronal Mass Ejections, or CMEs), involving
comparable energies. Small flare-like events are observed down to the limits
of observation and are difficult to distinguish from a variety of small-scale so-
lar activity. The distribution of flare energies follows a power-law distribution
(Hudson, 1991; Crosby, Aschwanden, and Dennis, 1993; Aschwanden, Dennis,
and Benz, 1998). Specifically, the frequency-energy distribution N (E), i.e. the
number of flares observed per unit time and per unit energy (E), obeys

N (E) = AE−γ , (1)

where the factor A is a (time-dependent) measure of the total flaring rate, and
γ ≈ 1.5. This distribution is often constructed for flares from all active regions
present on the Sun over some period of time, but it also appears to apply to
individual active regions (Wheatland, 2000), which suggests that the power law
is fundamental to the flare mechanism. A popular model explaining the power
law is the avalanche model (Lu and Hamilton, 1991; Charbonneau et al., 2001),
in which the magnetic field in the corona is assumed to be in a self-organized
critical state, and subject to avalanches of small-scale reconnection events. The
distribution (1) must have an upper roll-over, to ensure that the total energy
released in flares is finite (Kucera et al., 1997; Hudson, 2007).

The mechanisms causing flares are not well understood, and flares appear to
occur randomly in time, although certain properties of active regions correlate
with flaring (e.g. Sammis, Tang, and Zirin, 2000; McIntosh, 1990; Georgoulis
and Rust, 2007; Schrijver, 2007). Correspondingly, the prediction of flares is
in its infancy: the methods used are probabilistic and are rather inaccurate
at predicting the occurrence of large flares, which are rare but which strongly
influence our local space weather (Wheatland, 2005; Barnes et al., 2007; Barnes
and Leka, 2008).

The occurrence of flares in time may be investigated via a second observable
distribution, the flare waiting-time distribution, or the distribution of times
between events (this distribution is also referred to as the “interval distribu-
tion”). Determinations of flare waiting-time distributions have given varied re-
sults (Pearce, Rowe, and Yeung, 1993; Biesecker, 1994; Wheatland, Sturrock, and
McTiernan, 1998; Boffetta et al., 1999; Lepreti, Carbone, and Veltri, 2001; Moon
et al., 2001; Wheatland, 2001; Moon et al., 2002; Kubo, 2008), suggesting that
the observed distribution may depend on the particular active region, on time,
and that it also may be influenced by event definition and selection proce-
dures (Wheatland, 2001; Buchlin, Galtier, and Velli, 2005; Paczuski, Boettcher,
and Baiesi, 2005; Baiesi, Paczuski, and Stella, 2006). For some active regions,
the distribution is consistent with a simple Poisson process, i.e. independent
events occurring at a constant mean rate (Moon et al., 2001), and the corre-
sponding waiting-time distribution is exponential. Other active regions exhibit
time-variation in the flaring process, and flare occurrence may be approximated
by a piecewise-constant, or more generally time-varying Poisson process, in
which case the distribution is a sum or integral over exponentials (Wheatland,
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2001). On longer time scales, the distribution exhibits a power-law tail for events
from the whole Sun (Boffetta et al., 1999). Some authors have also argued that
the process is fundamentally non-Poissonian (e.g. Lepreti, Carbone, and Veltri,
2001), although the arguments neglect the role of time-dependence.

The energy balance of active regions presents a puzzle, because of the large
drops in energy due to large solar flares. In the following we consider a simple
“black box” approach to modelling the free energy of an active region (the energy
available to power flares), an approach that goes back to Rosner and Vaiana
(1978). Energy is assumed to be continuously supplied to the active region
by some external mechanism. The energy is stored locally in the corona, and
some is released at particular times in flares. The flaring process is considered
to be stochastic, whereas energy supply is deterministic. Flares are treated as
point processes in time, i.e. they occur at one instant in time, and they involve
jump transitions (discontinuous changes) in energy. A general model of this
kind was presented in Wheatland and Glukhov (1998) and further developed
in Wheatland (2008). The general model is based on a master equation for the
probability distribution [P (E, t)] for the free energy (E) of an active region at
time t. The free parameters in the model are a prescribed energy supply rate to
the system [β(E, t)], and prescribed transition rates [α(E, E′, t)], describing the
rate of jumps from energy E to energy E′ ≤ E. These two rate functions may
have any functional form. In Wheatland and Glukhov (1998) it was argued that
the energy-supply rate should not depend on the energy (E) of the system, since
active regions are driven externally, and hence a constant energy supply rate is
appropriate. It was also argued that, to produce an appropriate power-law flare
frequency-energy distribution, transition rates of the form α(E, E′) ∼ (E−E′)−γ

are required (in the steady state). Wheatland and Glukhov (1998) and Wheat-
land (2008) investigated the model by solving the master equation in the steady
state, for these “flare-like” choices for the free parameters. In Wheatland and
Glukhov (1998) the emphasis was on the basic model and the arguments for the
appropriate flare-like choices. A model was constructed that could reproduce
power-law behavior in the flare frequency-energy distribution over an arbitrary
number of decades in energy, up to a high energy roll-over set by the decline
of P (E) at large energy. Hence the flare-like model was confirmed to reproduce
this aspect of flare statistics. In Wheatland (2008) the waiting-time distributions
for the model were also considered, using theory for jump transition processes
presented for the first time by Daly and Porporato (2007). It was found that the
Wheatland and Glukhov (1998) model produces an essentially Poisson (exponen-
tial) waiting-time distribution. A modified model was also considered, involving
an α(E, E′) ∼ E(E − E′)−γ form for the transition rates. This model also
reproduced the power-law frequency-energy distribution, but exhibited some
departure from a simple Poisson waiting-time distribution.

Master equations may be represented by an equivalent stochastic differential
equation (van Kampen, 1992; Gardiner, 2004), which provides a complementary
approach to the problem at hand. Stochastic DEs are amenable to solution by
Monte-Carlo methods, which in general are simple to numerically implement.
This paper describes a Monte-Carlo approach to solving the stochastic model
for solar active-region energy presented in Wheatland and Glukhov (1998) and
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4 M. Wheatland

Wheatland (2008). The Monte-Carlo approach has specific advantages over the
master-equation approach: it is computationally more efficient, it permits more
general modelling, in particular the modelling solution of time-dependent prob-
lems, and it generates an ensemble of flare events and hence permits detailed
investigation of event statistics.

The layout of the paper is as follows. The master-equation approach of Wheat-
land and Glukhov (1998) and Wheatland (2008) is briefly reiterated in Sec-
tion 2.1, and the flare-like choices for the model are explained in Section 2.2.
The stochastic DE approach to the problem is then presented in Section 3.1,
and illustrated by application to a Gaussian test case (Section 3.2), and to
the flare-like cases from Wheatland (2008) (Section 3.3), including comparison
of a Monte-Carlo solution with direct numerical solution of the master equa-
tion. Section 3.4 presents a Monte-Carlo-based investigation of the variation of
the waiting-time distribution for the flare-like models, and Section 4 presents
conclusions.

2. Master Equation Approach

2.1. GENERAL APPROACH

To begin we briefly reiterate the master-equation formulation of the model,
following Wheatland and Glukhov (1998) and Wheatland (2008). The energy
[E = E(t)] of an active region is assumed to be a stochastic variable which
evolves in time due to deterministic energy input at a rate β(E, t), as well as
due to jumps downwards in energy (flares) at random times and of random sizes,
described by transition rates α(E, E′, t). These are the rate for jumps per unit
energy from E to E′ at time t. The probability distribution [P (E, t)] for the
energy of the system is given by the solution to the master equation

∂P (E, t)
∂t

= − ∂

∂E
[β(E, t)P (E, t)] − λ(E, t)P (E, t)

+
∫ ∞

E
P (E′, t)α(E′, E, t)dE′, (2)

where

λ(E, t) =
∫ E

0
α(E, E′, t)dE′ (3)

is the total rate of flaring at time t, assuming the system has energy E. [A time
dependence has been included in the transition rate, by contrast with Wheatland
(2008).] Two other quantities of interest are the mean total rate of transitions
(in the average over energy)

〈λ〉 =
∫ ∞

0
λ(E, t)P (E, t)dE (4)
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and the mean energy of the system

〈E〉 =
∫ ∞

0
EP (E, t)dE. (5)

As noted in Section 1, two observable flare distributions are the flare frequency-
energy distribution and the waiting-time distribution. The model frequency-
energy distribution is given by

N (E, t) =
∫ ∞

E
P (E′, t)α(E′, E′ − E, t)dE′. (6)

Daly and Porporato (2007) showed how to obtain the distribution of waiting
times (τ) for jump transition models in the steady state (∂/∂t = 0). In Wheat-
land (2008) that theory was applied to Equation (2) to yield the model waiting-
time distribution pτ (τ). The details of the derivation are given in Wheatland
(2008).

In Wheatland and Glukhov (1998) and Wheatland (2008) the master equation
was numerically solved in the steady state, for flare-like choices of β(E) and
α(E, E′) (the choices are explained in Section 2.2). The methods of solution
involved discretising the energy as a set of values Ei (i = 1, 2, 3, ..., N), in
which case the master equation represents a system of N linear equations in
N unknowns Pi = P (Ei). Solution of the linear system was performed either by
relaxation (Wheatland and Glukhov, 1998), or by back substitution (Wheatland,
2008). One disadvantage of these methods is that the energy may span many
decades in energy, in which case a large value of N is required.

2.2. FLARE-LIKE CHOICES

In Wheatland and Glukhov (1998), the master equation was solved in the steady
state (∂/∂t = 0) for the choices β(E) = β0, a constant, and

α(E, E′) = α0(E − E′)−γθ(E − E′ − Ec), (7)

where α0 is a constant, Ec is a low-energy cutoff, and θ(x) is the step function.
In Wheatland (2008) Equation (7) was generalised to include an additional
dependence on the initial energy E:

α(E, E′) = α0E
δ(E − E′)−γθ(E − E′ − Ec), (8)

where δ is a constant. The problem was solved for Equation (8) with δ = 0 and
δ = 1, and for β(E) = β0.

The physical motivations for these choices is briefly mentioned in Section 1,
but is worth discussing in more detail. Concerning the energy-supply rate, the
physical aspect is that the rate does not depend on the energy of the system. This
is appropriate for a system that is externally driven, and for which there is no
back reaction of the system on the driver. The picture for the Sun is that energy
supply comes from below (i.e. from the sub-photosphere), via photospheric flows
which cause new fields to emerge into the corona, and twist existing coronal
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6 M. Wheatland

fields. The rate at which this occurs is determined by flow patterns in the sub-
photosphere. The sub-photosphere is very dense, so it is unlikely that the corona
can influence the rate of supply of energy, assuming this picture of energy supply
is correct. Of course, the energy supply rate may depend on time, and the choice
of a constant supply rate is a simplification. We will return to the question of
time-dependent driving in Section 4.

Concerning the functional forms for the transition rates, first note that sub-
stituting Equation (8) into Equation (6) leads to the flare frequency-energy
distribution

N (E) = α0E
−γ

∫ ∞

E
(E′)δ

P (E′)dE′, (9)

for E ≥ Ec. It follows that the frequency-energy distribution is a power law with
index γ up to energies E at which P (E) becomes very small. This is consistent
with the observed power-law frequency-energy distribution (1), and the physical
requirement that the frequency-energy distribution rolls over at large energies
(to ensure the total mean rate of energy release in flares is finite). An estimate
of the energy for departure from power-law behavior is provided by the mean
energy, which may be approximated by (Wheatland and Glukhov, 1998)

〈E〉 ≈
(

2 − γ

α0/β0

)1/(δ+2−γ)

. (10)

In principle, other functional choices leading to power-law behavior are possible,
although it has proven difficult to identify alternative solutions with an energy-
supply rate independent of energy that produce a power-law form for N (E).

Another motivation for the choices (7) and (8) for the transition rates comes
from consideration of avalanche type models (Lu and Hamilton, 1991; Char-
bonneau et al., 2001). In these models the volume involved in flaring is the set
of unstable sites which trigger one another during the flare “avalanche.” The
volume of this region is found to be scale free, i.e. power-law distributed, and is
fractal in shape. Assuming the volume of the region is proportional to the energy
released, this implies a form ∼ (E −E′)−γ for the probability per unit time of a
transition from energy E to E′, assuming flares occur at a constant rate per unit
time. Hence the flare-like choices for the master equation may correspond to the
avalanche model, although the detailed relationship between the two pictures
remains to be worked out.

Some support for these choices is provided by the resulting waiting-time
distributions. The numerical solutions for P (E) in Wheatland (2008) lead to
waiting-time distributions which are approximately exponential. This may be
understood by noting that substituting Equation (8) into Equation (3) gives the
total rate for flaring

λ(E, t) =
{

α0Eδ
(
E−γ+1

c − E−γ+1
)
/(γ − 1) if E ≥ Ec,

0 else. (11)

For E $ Ec we have

λ(E) ≈ α0

γ − 1
E−γ+1

c Eδ. (12)
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For δ = 0, Equation (12) implies λ(E) is constant (independent of E). For δ = 1
we have λ(E) ∝ E, and hence the mean rate may be approximately constant,
provided P (E) is non-zero only over a fairly limited range in E. Hence the total
rate of flaring may be approximately constant for δ = 0 and δ = 1, consistent
with a simple Poisson process. As discussed in Section 1, this is compatible with
observed flare statistics in active regions for which the rate does not vary in time
(Moon et al., 2001; Wheatland, 2001).

3. Stochastic DE Approach

3.1. GENERAL APPROACH

Following Daly and Porporato (2007), the master Equation (2) is equivalent to
the stochastic differential equation

dE

dt
= β(E, t) − Λ(E, t) (13)

where

Λ(E, t) =
N(t)∑

i=1

∆Eiδ(t − ti) (14)

describes the loss in energy due to flaring, with δ(x) being the delta function,
N(t) being the number of events up to time t, and with the event times ti defined
by a “state-dependent” Poisson process with occurrence rate λ(E, t). The jump
amplitudes ∆E follow the distribution h(∆E, E, t), defined by

α(E, E −∆E, t) = λ(E, t)h(∆E, E, t), (15)

so that
∫ E

0
h(∆E, E, t)d(∆E) = 1. (16)

The ODE (13) may be solved in the following way. First, choose a start-energy
Es at time ts. The energy of the system evolves deterministically from this time
up until the first jump at time te = ts +τ , where τ is a waiting time. The waiting
time corresponds to a time-dependent Poisson process with a rate λ [E(t), t]. To
evaluate this rate, note that the energy during the deterministic trajectory obeys

dE

dt
= β(E, t). (17)

Solving Equation (17) with the initial condition E = Es at t = ts defines the
time history E∗(t) for the energy, and this together with λ = λ(E, t) defines the
rate λ [E∗(t), t] prior to a jump. A waiting time may be generated for this rate
by finding the root of the monotonic function (Wheatland and Craig, 2006):

F (τ) = ln(1 − u) +
∫ ts+τ

ts

λ [E∗(t), t] dt, (18)
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8 M. Wheatland

where u is a uniform deviate (a uniformly-distributed number in the range 0 ≤
u < 1). If numerical root finding is required, then Newton-Raphson is a suitable
method (e.g. Press et al. 1992), and in that case it is worth noting that

F ′(τ) = λ [E∗(te), te] , (19)

where te = ts + τ .
Once the waiting time τ has been generated, the jump may be simulated.

The energy before the jump is Ee = E∗(te), the end-energy of the deterministic
trajectory. The size ∆E of the jump may be determined by generating a random
variable from the distribution h(∆E, Ee, te), which is defined by Equation (15).
A value ∆E may be obtained by the usual technique of transforming a uniform
deviate to a random variable from the required distribution (Press et al., 1992).
Once ∆E is calculated, a new start energy Es = Ee −∆E is specified at time te
just after the jump, and the whole process may then be repeated. This procedure
can be repeated an arbitrary number of times, to give a simulated time history
of energy E(t) for the system over an arbitrary number of jumps. Provided
Equations (17) and (18) are straightforward to evaluate, the process involves
relatively little computational expense.

3.2. GAUSSIAN TEST CASE

To illustrate the method, consider the “Gaussian” test case discussed in Wheat-
land and Glukhov (1998) and Wheatland (2008), namely the case with β(E, t) =
β0 and α(E, E′, t) = α0 (where α0 and β0 are constants). In that case the solution
to the steady state master equation is

P (E) = aEe−
1
2aE2

, (20)

with a = α0/β0, and from Equation (6) the frequency-energy distribution for
jumps is also a Gaussian:

N (E) = α0e−
1
2aE2

. (21)

From Equation (3) the total rate of events is λ(E) = α0E, and from Equation (4)
the mean total rate is 〈λ〉 = (α0β0)

1/2. Using the method outlined in Wheatland
(2008), the waiting-time distribution is also a Gaussian:

pτ (τ) =
(

2α0β0

π

)1/2

e−
1
2α0β0τ2

. (22)

To simulate the Gaussian test case using the Monte-Carlo approach, note that
the solution to Equation (17) with β(E, t) = β0 and with starting energy Es at
time ts is

E∗(t) = Es + β0 (t − ts) , (23)

and we have λ(E) = α0E, so

λ[E∗(t)] = α0 [Es + β0 (t − ts)] . (24)
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Equation (18) evaluates to

F (τ) = ln(1 − u) + α0Esτ +
1
2
α0β0τ

2, (25)

and taking the positive root of this quadratic function gives

τ =
Es

β0

[(
1 +

2
aE2

s
ln

1
1 − u

)1/2

− 1

]
. (26)

For this case the distribution of jump amplitudes, from Equation (15), is given
by

h(∆E, E) =
1
E

(27)

for 0 ≤ ∆E ≤ E. The jump energies are uniformly distributed on (0, E), and a
jump may be generated from a uniform deviate u using ∆E = Eu. Finally, the
mean energy

〈E〉 =
( π

2a

)1/2
(28)

provides a suitable starting energy for simulation.
Figure 1 illustrates a Monte-Carlo solution of the Gaussian test case using

Equations (23) – (28), for the choices α0 = 0.01 and β0 = 1. The upper panel
in the figure shows the time history of system energy for the simulation for
25 jumps, and the lower panel shows the corresponding event energies versus
time. The energy of the system grows linearly with time between jumps, and the
jumps occur with a rate which increases linearly with energy. The jump sizes
are uniformly distributed, up to the current energy of the system.

Figure 2 illustrates the Monte-Carlo solution of the Gaussian test case with
the same parameters (α0 = 0.01 and β0 = 1) for 5000 waiting times and jumps,
and compares the results with the analytic expressions. The left-hand panel
shows the histogram of the system energy, and the right-hand panel shows the
histogram of waiting times. The corresponding analytic distributions P (E) and
pτ (τ), given by Equations (20) and (22) respectively, are shown by the solid
curves. The histogram of system energy was obtained by sampling the simulated
time history of energy E(t) at 5000 random times, uniformly distributed over
the duration of the simulation. These results illustrate the application of the
Monte-Carlo approach, and confirm that it reproduces the analytic results.

3.3. FLARE-LIKE CASES

Next we consider the flare-like cases corresponding to Equation (8), from Wheat-
land (2008). For those case the total rate of flaring is given by Equation (11), and
the energy supply rate is β = β0, a constant. If the last event is at t = ts, when
the energy is Es, then the subsequent deterministic trajectory in energy (prior to
the next jump) is given by Equation (23). Using this result and Equation (11),
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10 M. Wheatland

Figure 1. Monte-Carlo solution of the Gaussian test case with α0 = 0.01 and β0 = 1, with
25 jump transitions and waiting times. The upper panel shows the system energy versus time,
and the lower panel shows the event energies versus time.

Figure 2. Monte-Carlo solution of the Gaussian test case, involving 5000 jump transitions,
and parameter values α0 = 0.01, β0 = 1. The histogram in the left-hand panel shows the
distribution of system energy, and the histogram in the right-hand panel shows the distribution
of waiting times. The corresponding analytic results are shown in the two panels by solid curves.

Equation (18) evaluates to

F (τ) = ln(1 − u) +
α0/β0

γ − 1

{
E−γ+1

c

δ + 1

[
(Es + β0τ)δ+1 − εδ+1

]

− 1
δ − γ + 2

[
(Es + β0τ)δ−γ+2 − εδ−γ+2

]}
, (29)
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Monte-Carlo Simulation of Active Region Energy 11

where ε = Es if Es ≥ Ec, and ε = Ec if Es < Ec. In this case numerical root
finding is required, and for the application of Newton-Raphson it is helpful to
note from Equation (19) that

F ′(τ) =
α0

γ − 1
(Es + β0τ)δ

[
E−γ+1

c − (Es + β0τ)−γ+1
]
. (30)

The distribution of jump energies defined by Equation (15) is

h(∆E, E) =
(γ − 1)(∆E)−γ+1

E−γ+1
c − E−γ+1

(31)

for Ec ≤ ∆E ≤ E. A variable with this distribution may be generated from a
uniform deviate u for a given E using the transformation

∆E =
[
E−γ+1

c − u
(
E−γ+1

c − E−γ+1
)]−1/(γ−1)

. (32)

A suitable starting energy for a simulation is provided by Equation (10).
Following Wheatland and Glukhov (1998) and Wheatland (2008), it is useful

to non-dimensionalize, by introducing

E =
E

Ec
, t =

β0t

Ec
, (33)

and

r =
α0Eδ−γ+2

c

β0
. (34)

Equations (29) and (30) become

F (τ ) = ln(1 − u) +
r

γ − 1

{
1

δ + 1

[(
Es + τ

)δ+1 − εδ+1
]

− 1
δ − γ + 2

[(
Es + τ

)δ−γ+2 − εδ−γ+2
]}

(35)

where ε = Es if Es ≥ 1, and ε = 1 if Es < 1, and

F ′(τ ) =
r

γ − 1
(
Es + τ

)δ
[
1 −

(
Es + τ

)−γ+1
]
, (36)

respectively. The transformation used to generate jump energies is

∆E =
[
1 − u

(
1 − E

−γ+1
)]−1/(γ−1)

, (37)

and the starting energy is

〈E〉 ≈
(

2 − γ

r

)1/(δ+2−γ)

. (38)
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12 M. Wheatland

The parameters δ and r define the specific model being solved. Equation (38)
implies that r < 1

2 is required for 〈E〉 > 1. Smaller values of r lead to larger values
of 〈E〉 and hence more decades of power-law behavior in the frequency-energy
distribution, as explained in Section 2.2. Many decades of power-law behavior
are observed for flares on the Sun, implying a small value of r.

As an example of applying Equations (35) – (38), we consider the case δ = 0,
from Wheatland and Glukhov (1998). Figure 3 shows the results of a Monte-
Carlo solution with δ = 0 and r = 0.02. The upper panel shows the time history
of the energy of the model active region over the first 50 jumps, and the lower
panel shows the corresponding flare energies versus time (with a logarithmic
scale). The mean energy of the system is 〈E〉 = 625, which is the starting energy
for the simulation. Figure 3 illustrates the character of the flare-like models.
The active-region energy grows linearly with time between flares, flare sizes are
power-law distributed, and the total flaring rate is approximately constant, since
E $ 1. During this period of time only relatively small flares occurred, with the
largest event having energy close to 100 in non-dimensional units.

Figure 3. Monte-Carlo solution of the flare-like case from Wheatland and Glukhov (1998),
with δ = 0 and r = 0.02. The upper panel shows the active-region energy versus time, and
the lower panel shows the flare energy versus time, for a period of time including 50 jump
transitions.

Figure 4 illustrates the Monte-Carlo solution with the same parameters (δ = 0
and r = 0.02) for 3× 104 waiting times and jump transitions, and compares the
results with direct solution of the master equation. The upper-left panel shows
the time history of the energy of the system, with the mean energy 〈E〉 = 625
shown by a horizontal line, which is also indicated by an arrow near the left-hand
axis of the panel. The upper-right panel shows the histogram of the energy of
the system, obtained by sampling the simulated time history of energy at 3×104
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Monte-Carlo Simulation of Active Region Energy 13

random times. The mean energy is shown by a solid vertical line. The solid curve
is the distribution obtained by solving the master equation in the steady state,
using the method in Wheatland (2008). The lower-left panel shows the histogram
of waiting times, in a log-linear representation, together with the waiting-time
distribution obtained from the solution to the master equation (solid curve).
The lower-right panel shows the flare frequency-energy histogram, together with
the distribution obtained from the solution to the master equation (solid curve),
and the mean energy (solid vertical line). The Monte-Carlo solutions agree with
the direct solution of the master equation. These results confirm the finding in
Wheatland (2008) that the waiting-time distribution is essentially exponential
in this case.

Figure 4. Monte-Carlo solution of the flare-like case from Wheatland and Glukhov (1998),
involving 3×104 jump transitions, and the parameter value r = 0.02. The figure shows the ac-
tive-region energy versus time (upper left), and histograms of: the active-region energy (upper
right); the waiting-time distribution (lower left); and the flare frequency-energy distribution
(lower right). The corresponding results obtained by solving the master equation in the steady
state are shown by solid curves. The active-region mean energy is indicated by an arrow near
the left-hand axis of the upper-left panel, and is shown by a solid vertical line in the two panels
on the right.

The comparison in Figure 4 illustrates the computational advantage of the
Monte-Carlo method over direct solution of the master equation. The results
shown by the solid curves in Figure 4 require the solution of a linear system
in 5000 unknowns, to obtain sufficient energy resolution to ensure accuracy. By
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14 M. Wheatland

comparison, the Monte-Carlo solution requires the simulation of 3× 104 waiting
times and jump transitions, but each of these calculations is simple. As a result
the Monte-Carlo method is substantially faster than the linear solution.

3.4. WAITING-TIME DISTRIBUTIONS FOR FLARE-LIKE CASES

In Wheatland (2008) it was shown using numerical solutions of the master
equation that the flare-like models with δ = 0 and δ = 1 exhibit approxi-
mately Poisson (exponential) waiting-time distributions, for certain choices of
the non-dimensional ratio r = α0Eδ−γ+2

c /β0 of transition rates to energy-supply
rate [in Wheatland (2008) this ratio was labelled α0, or just α0, when the bar
was dropped]. These results are briefly discussed in Section 2.2. However, the
results also showed some departure from the simple Poisson distribution. In this
section we further investigate the behavior of the models and in particular the
waiting-time distributions, using Monte-Carlo solutions.

Figure 5 illustrates three solutions for the case δ = 0. Each solution involves
3 × 104 waiting times and jump transitions. The upper row in Figure 5 shows
the flare frequency-energy distributions in a log-log representation, and the
lower row shows the corresponding waiting-time distributions, in a log-linear
representation. The left-hand pair of distributions is for r = 0.5, the center pair
is for r = 0.05, and the right-hand pair is for r = 0.005. The solid vertical
lines in the frequency-energy distributions show the approximation to the mean
energy 〈E〉 given by Equation (38). The three choices of r shown correspond
to values 〈E〉 = 1, 〈E〉 = 102, and 〈E〉 = 104. The solid lines on the waiting-
time distributions show the exponential form λme−λmτ , where λm is the overall
mean rate of events, i.e. the number of events divided by the total time (non-
dimensionalised). The upper row of Figure 5 confirms that the frequency-energy
distribution is a power law with index γ below a roll-over set by the largest energy
the system is likely to attain, which may be roughly approximated by 〈E〉. For
smaller values of r, the system attains larger energies, as flaring is less frequent.
The lower row of Figure 5 shows that the waiting-time distribution becomes
exponential as 〈E〉 increases (or as r decreases). This may be understood using
the argument given in Section 2.2: for r ! 1, the energy E of the system satisfies
E $ 1, in which case the approximation of Equation (12) applies, and the total
rate of flaring λ(E) is then independent of E.

Figure 6 illustrates three solutions for the case δ = 1, again with 3 × 104

waiting times and jump transitions. The format of the figure is the same as for
Figure 5, and the values of r for the three cases are chosen so that the values
of 〈E〉 [using the approximation of Equation (38)] are the same, i.e. 〈E〉 = 1
(left), 〈E〉 = 102 (center), and 〈E〉 = 104 (right). The corresponding values of r
are given above the three rows in the figure. The upper row of Figure 6 shows
the expected power-law behavior below an upper roll-over given approximately
by 〈E〉. The lower row of Figure 6 shows that the waiting-time distribution is
approximately exponential for 〈E〉 = 102, but for 〈E〉 = 104 there is an excess of
large waiting times by comparison with the exponential form. Referring again to
the argument in Section 2.2, for r ! 1 we expect E $ 1, in which case the total
flaring rate varies approximately as λ(E) ∝ E. The linear variation in mean
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Figure 5. The flare frequency-energy distributions (upper row) and flare waiting-time distri-
butions (lower row) for the flare-like case with δ = 0. The left-hand pair of distributions is for
〈E〉 ≈ 1 (r = 0.5), the center pair is for 〈E〉 ≈ 102 (r = 5 × 10−2), and the right-hand pair is
for 〈E〉 ≈ 104 (r = 5 × 10−3).

Figure 6. The flare frequency-energy distributions (upper row) and flare waiting-time distri-
butions (lower row) for the flare-like case with δ = 1. The left-hand pair of distributions is for
〈E〉 = 1 (r = 0.5), the center pair is for 〈E〉 = 102 (r = 5 × 10−4), and the right-hand pair is
for 〈E〉 = 104 (r = 5 × 10−7).

flaring rate with energy leads to some departure from the simple exponential
form, with the departure becoming more significant as r decreases.

Figure 7 illustrates three solutions for the case δ = 2, again with 3 × 104

waiting times and jump transitions. The format of the figure is the same as for
Figures 5 and 6, with the values of r again corresponding to approximate mean
energies 〈E〉 = 1 (left), 〈E〉 = 102 (center), and 〈E〉 = 104 (right). The results
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16 M. Wheatland

Figure 7. The flare frequency-energy distributions (upper row) and flare waiting-time distri-
butions (lower row) for the flare-like case with δ = 2. The left-hand pair of distributions is for
〈E〉 = 1 (r = 0.5), the center pair is for 〈E〉 = 102 (r = 5 × 10−6), and the right-hand pair is
for 〈E〉 = 104 (r = 5 × 10−11).

for the frequency-energy distribution (upper row) are as expected, with power-
law behavior below an upper roll-over given approximately by 〈E〉. The results
for the waiting-time distribution are similar to the case δ = 1, but are more
pronounced. For 〈E〉 = 102 there is very approximate exponential behavior, with
some excess of large waiting times. For 〈E〉 = 104 there is substantial departure
from the exponential model, with a pronounced excess of large waiting times.
Using the argument in Section 2.2, we expect approximate ∝ E

2 dependence of
the total flaring rate for E $ 1. This variation in the mean flaring rate with
energy leads to the departure from the exponential form.

The results shown in Figures 5 – 7 suggest that the δ = 0 model may be the
preferred flare-like solution. The flare frequency-energy distribution is observed
to be a power law over many decades in energy, which implies r ! 1. The models
with δ %= 0 exhibit significant departure from Poisson waiting-time statistics for
r ! 1. However, it is not clear that any such departure is observed for flares
on the Sun: some active regions that produce very large flares appear to exhibit
simple Poisson waiting-time statistics (Moon et al., 2001; Wheatland, 2001).

The variation in total flaring rate with energy of the system for the cases with
δ %= 0 also implies observable consequences. For example, if we pick out “large”
events from a simulation ensemble with δ %= 0 and plot the waiting time before
the event versus the waiting time after the event, then we expect that the waiting
times after the event will tend to be larger than the waiting times before, since
large events deplete the system energy, and hence reduce the total rate. Figure 8
illustrates this effect. The figure is constructed using the simulation shown in
Figure 7 with δ = 2 and 〈E〉 = 104, and the threshold for a large event is chosen
to be 0.2〈E〉. The solid line is the line of equality of the two waiting times. As
expected, the waiting times after the large events tend to be larger than the
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waiting times before the event (more points lie below the line of equality than
above). No such effect is observed when a similar plot is constructed for the
model with δ = 0 and 〈E〉 = 104. This effect is not observed for flares on the
Sun (Wheatland, Sturrock, and McTiernan, 1998; Wheatland, 2001).

Figure 8. Plot of the waiting time before an event, versus the waiting time after an event, for
all events larger than 0.2〈E〉, for the simulation with δ = 2 and 〈E〉 = 104 shown in Figure 7.

4. Conclusions

This paper presents a Monte-Carlo method for solving the stochastic model for
active region energy presented in Wheatland and Glukhov (1998) and Wheat-
land (2008), which in particular is suited to solving the flare-like cases in those
papers. The method numerically solves the stochastic differential equation de-
scribing the system, rather than the equivalent master equation, and provides
a computationally-efficient approach to the problem. The method is demon-
strated on a simple Gaussian test, and is compared with a direct solution of the
steady-state master equation for a flare-like case from Wheatland and Glukhov
(1998).

The method is used to further investigate the class of flare-like models from
Wheatland (2008), which feature constant energy-supply rates β0 and flare
transition rates of the form

α(E, E′) = α0E
δ(E − E′)−γθ(E − E′ − Ec), (39)

where α0 is a constant, and Ec is a low-energy cutoff. The index γ = 1.5 is the
observed flare frequency-energy power law index, and δ is a positive constant
(we consider the cases δ = 0, δ = 1, and δ = 2). The emphasis in the investiga-
tion is on the waiting-time distributions for these models, and their adherance
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18 M. Wheatland

to/departure from a Poisson (exponential) form, as a function of δ and of the
dimensionless ratio r = α0Eδ−γ+2

c /β0. The models require small values of r to
produce flares with a frequency-energy distribution exhibiting a power law over
many decades [a lower bound to the departure from power-law behavior is set by
the estimate of the mean energy 〈E〉 ≈ [(2 − γ)/r]1/(δ+2−γ)]. For the δ = 0 model
it is found that the waiting-time distribution becomes a close approximation to a
simple exponential for small r. This may be explained in terms of the total rate of
flaring becoming constant for large E, which applies when r ! 1. For the δ = 1
and δ = 2 models the waiting-time distribution is approximately exponential for
intermediate values of r, but exhibits an excess of large waiting times for r ! 1.
This result may make the δ = 0 case the preferred flare-like solution, since it
is unclear that any such departure is observed for flares on the Sun. Also, the
dependence of the total flaring rate on the active-region energy for the δ = 1
and δ = 2 models implies variations in flare rate with flare occurrence which do
not appear to be observed on the Sun.

It is interesting to reconsider the correspondence between the stochastic model
and the avalanche model for flares (Lu and Hamilton, 1991; Charbonneau et al.,
2001), in light of the new results. The investigation in this paper excludes the
possibility of a stochastic model with transition rates of the form of Eq. (39)
with δ %= 0, which simultaneously exhibits a wide range of flare energies and
has uncorrelated waiting times. This is due to large flares changing the system
energy and hence total flaring rate significantly. The choice for the transition
rates was motivated in part by the avalanche model (as outlined in Section 2.2).
Avalanche models exhibit power-law frequency-energy distributions over many
decades, and they have uncorrelated waiting times (Wheatland, Sturrock, and
McTiernan, 1998). However, in avalanche models the largest flares deplete only
a small fraction of of the avalanche grid “energy” (see e.g. Fig. 3 in Charbonneau
et al., , 2001). The discrepancy between the two pictures might be due to
different definitions of energy (the avalanche model “energy” may correspond
to free energy plus background magnetic energy unavailable for flares). Another
possibility is that the δ = 0 model provides the closest match to the avalanche
picture. A more careful analysis of the correspondence between the two models
is needed to resolve this point.

The Monte-Carlo approach has several advantages over solution of the master
equation. First, as discussed in Section 3.3, the Monte-Carlo solution is numeri-
cally simple to implement and computationally efficient. Second, as highlighted
by Figure 8, since the Monte-Carlo approach produces an ensemble of flare
events, it permits detailed investigation of event statistics. A third advantage
of the Monte-Carlo method is that it permits solution of the model in time-
dependent situations. In principle solutions may be constructed for arbitrary
time variation of the rates β(E, t) and α(E, E′, t). The methods of solution of
the master equation presented in Wheatland and Glukhov (1998) and Wheatland
(2008) apply only in the steady state, and in particular the method of obtaining
the waiting-time distribution requires a steady state. As discussed in Section 1,
time variation in observed flaring rates plays a role in determining the observed
waiting-time distribution, so it is of interest to consider time-dependent models.
These models will be addressed in future work.
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It is possible to construct more general stochastic models for active-region
energy. Active regions may lose energy by mechanisms other than flaring, e.g.
due to slow ohmic dissipation of electric currents. If the energy loss is considered
to be deterministic, and smaller in magnitude than the energy input rate, then
β(E, t) in the present model may be interpreted as a net energy-supply rate,
and the model may be considered to already accommodate energy losses of this
kind. If the energy loss is assumed to occur via small random decrements, then
a suitable model may be to include a Fokker-Planck (diffusion) term in the
master equation, describing continual small random increases and decreases in
energy. (The increases may correspond to fluctuations in the energy supply rate.)
A more general form for the jump-transition master equation, sometimes called
the Chapman-Kolmogorov equation (Gardiner, 2004) includes drift (representing
deterministic energy input or loss), diffusion (small random input or loss), and
jump transitions. An active-region model of this form was briefly discussed in
Wheatland (2008). In the context of the Monte-Carlo approach, the diffusion
term corresponds to a Wiener process, and a different method of solution of the
stochastic DE is then required.

Models of the kind presented in this paper are difficult to test in detail against
flare observations because of the difficulties associated with determining the free
energy of active regions, and the rate of energy supply to active regions. How-
ever, we note that improved solar observations (and analysis techniques) may
eventually provide such information. Independent of this, the models provide
important qualitative checks on our understanding of energy balance in solar
active regions. For example, as noted in Section 2.2, it has proven difficult to
identify choices other than the flare-like ones investigated here that produce
suitable power-law flare frequency-energy distributions. The models are also of
intrinsic interest because of their description of a dynamical balance involving
scale-free transitions, and it is possible that they provide suitable descriptions
of a variety of other physical systems exhibiting power-law behavior.
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