Modeling a falling slinky

M. S. Wheatland and R. C. Cross

School of Physics The University of Sydney

> Research Bite 7 June 2012

The fall of a plastic rainbow-coloured slinky.

Overview

Background Slinky physics and the fall Waves on slinkies

Modeling the fall

Improving an existing model Comparison with real slinkies

Conclusions

Background: Slinky physics

Slinkies are useful physics demonstration devices

- hanging configuration (e.g. Mak 1993)
- vertical modes of oscillation when suspended (e.g. Young 1993)
- Wave propagation/dispersion (e.g. Crawford 1987; Vandegrift et al. 1989)
- peculiar dynamics when falling (e.g. Calkin 1993; Aguirregabiria et al. 2007)
- Slinkies are tension springs¹
 - under tension subject to Hooke's law but not compression
 - they collapse to a state with turns in contact
 - tension is required to separate collapsed turns
- A slinky suspended from its top and dropped ...
 - collapses from the top down
 - the bottom remains hanging (≈ 0.3 s) during the collapse!

¹Compression springs (the other type of spring) may be under compression or tension according to F = -kx. They have separated turns in a relaxed state, with zero tension.

For movies, see: www.physics.usyd.edu.au/~wheat/slinky/.

Background: Waves on slinkies

- Collapse of tension occurs from the top down
 - ► a (tension) wave propagates down the slinky
 - the tension remains ahead of the wave front
 - turns collapse behind the wave front
- Uncollapsed slinky turns are described by a wave equation:

$$m\frac{\partial^2 x}{\partial t^2} = k\frac{\partial^2 x}{\partial \xi^2} + mg \tag{1}$$

- *m* is slinky mass, *k* is spring constant
- $x = x(\xi, t)$ is the vertical location of a point on slinky
- coordinate ξ defines mass fraction: $dm = m d\xi$ and $0 \le \xi \le 1$
 - ▶ so $\xi_i = i/N$ is the end of turn *i* (for an *N*-turn slinky)
- ► Eq. (1): waves in turn spacing propagate
 - characteristic propagation time along slinky:²

$$t_p = \sqrt{m/k} \tag{2}$$

²For typical slinkies $m \approx 0.2$ kg and $k \approx 0.8$ N/m giving a characteristic time $t_p \approx 0.5$ s.

(3)

Modeling the fall: Improving an existing model

- Solving the equation of motion directly is tricky
 - Eq. (1) applies until turns collide
 - the tension-spring behaviour complicates the description
- An earlier model used a semi-analytic approach: (Calkin 1993)
 - wave front assumed to be at $\xi_c = \xi_c(t)$ at time t
 - behind the front: the turns are collapsed
 - ahead of the front: the hanging configuration (right)
 - calculate the total momentum implied by this
 - set equal to the impulse mgt at time t and solve for ξ_c
 - total collapse time (bottom starts to fall):^a

$$t_c = \sqrt{\frac{m}{3k}\xi_1^3} = \sqrt{\frac{1}{3}\xi_1^3} t_p$$

• $1 - \xi_1$ is fraction of hanging slinky collapsed at bottom

^aFor typical slinky parameters, with $\xi_1=0.9$, the total collapse time is $t_c pprox 0.24$ s.

- Problem: turns collapse instantly at the front in the model
 - for real slinkies: a finite time for turns to come together
- ► An improved model: (Cross & Wheatland 2012)
 - same semi-analytic approach but ...
 - including a finite time for collapse behind the front
 - tension relaxes linearly over a fixed number of turns
 - the total collapse time is unchanged
- Movies of the slinky fall and the model:

http://www.physics.usyd.edu.au/~wheat/slinky

Modeling the fall: Comparison with real slinkies

- Rod dropped slinkies and filmed them at 300 frames/s
 - position of turns with time extracted from frames
 - position of top fitted to model to determine parameters:
 - spring constant, collapse parameter, time of release
- Two slinkies with different properties considered
 - slinky A is a metal slinky
 - slinky B is the plastic rainbow-coloured slinky

	Slinky A	Slinky B
Mass (g)	215.5	48.7
Collapsed length (mm)	58	66
Stretched length (m)	1.26	1.14
Number of turns	86	39

An independent test of the model parameters:

- the spring constant k is a fitted parameter
- fundamental period T_0 depends on this: (Young 1993)

$$T_0 = 4\sqrt{\frac{m}{k}} = 4t_p$$

▶ Rod measured T_0 for each slinky ...

	Slinky A	Slinky B
Model T_0 (s)	2.23	1.88
Observed T_0 (s)	2.18	1.77

Consistent after taking uncertainties into account

(4)

Conclusions

- Slinkies are useful physics demonstration devices
- Falling slinkies exhibit peculiar physics
 - tension collapses from the top down
 - the bottom remains suspended until the top hits it
 - a wave must propagate downwards before the bottom falls
- ► An improved model of the fall is developed (Cross & Wheatland 2012)
 - based on an existing semi-analytic model ... (Calkin 1993)
 - modified so the collapse of slinky turns takes a finite time
- The new model is fitted to data from high-speed movies
 - good qualitative fit to data achieved
 - values of spring constant checked independently