Has the Sun lost its spots?

M. S. Wheatland

School of Physics
Sydney Institute for Astrophysics
University of Sydney

Research Bite
3 September 2009

The University of Sydney

Oct 2003 (top) and Aug 2009 (bottom) [MDI]
Overview

Sunspots and solar activity

The solar cycle

Has the Sun lost its spots?

Solar irradiance variation

My research

Summary
Sunspots and solar activity

- Sunspots: regions with kG surface magnetic fields
- Sunspot magnetic fields power solar activity
 - flares: magnetic explosions in the Sun’s atmosphere (corona)
 - large solar flares influence our local “space weather”
Space weather

- Carrington (1859): the first flare observation
 - a “white light flare,” visible around sunspots
 - possibly the largest flare of the past 500 years
 - magnificent aurorae followed
 - telegraph communications disrupted
 - however, Sun-Earth connection doubted at that time

Carrington’s sketch of the flare [Carrington 1859, MNRAS 20, 13-15]

Space weather effects include:

- damage to satellite electronics
- radiation risks in space due to Solar Energetic Protons

A modern Carrington event could cause $70 billion in losses.\(^2\)

\(^2\) Odenwald, Green, & Taylor 2006, Advances in Space Research 38, 280-297
The solar cycle

- The average sunspot number varies with an 11-year cycle
 - but the variations are not very regular
 - the maximum number over a cycle varies a lot
 - recent cycles are numbered: the last was cycle 23

The sunspot record since the invention of the telescope [http://science.nasa.gov/]
We are currently at solar minimum

- the red curve is a prediction (ask Richard Thompson!)

Recent sunspot numbers [http://www.swpc.noaa.gov/SolarCycle/]
The Hale cycle

- The polarity of the field patterns repeat every 22 years
- The magnetic field is regenerated on a 22-year cycle
 - the Hale cycle
- Early spots of a new cycle appear at high latitude...
 - ...with a reversed polarity

Azimuthal averages of the surface field [NASA/MSFC/NSSTC/Hathaway 2008]
The solar dynamo

- The magnetic fields are produced by a “dynamo process”
 - driven by differential rotation and convection
 - helioseismology provides information on internal rotation
 - thought to operate at the tachocline region
- The models are ‘not quite there yet’

The Sun’s internal rotation profile, via helioseismology [http://www.sp.ph.ic.ac.uk/~mjt/]
Has the Sun lost its spots?

- The new cycle (24) is taking a long time to start
- NASA – the boy who cried wolf...

There have been some new cycle spots [http://science.nasa.gov]

3 Appropriate given that there is a Wolf sunspot number!
A century-level minimum

- 2008 has 266 spotless days (73%)
 - you need to look back to 1913 to find a blanker year (85%)
 - 2009 has had 193 spotless days already (79%)
 - the latest stretch: 51 days to the end of August...

A deep minimum [http://science.nasa.gov]
...and then there was a spot... sort of

- Sunspot region 11025 emerged on 1 September 2009
 - a tiny new-cycle region
 - and promptly faded away, leaving not a rack behind :-(

Sunspot region 11025 fails to break the drought [http://www.solarmonitor.org]
Solar irradiance variation

- Total Solar Irradiance varies by \(\approx 0.1\% \) with the cycle
 - precise data for the last few decades
 - the energy output is higher at times of high activity
- Sunspots are dark, but surrounding faculae brighten up

Solar activity and climate (Foukal, Fröhlich, Spruit, & Wigley 2006, Nature 443, 161-166)

- Irradiance variation seems too small to affect global climate
 - however UV variability larger, heats upper atmosphere?
 - argued that increased activity decreases cloud cover?
- Glacial/Interglacial cycles due to orbital variations
- But: a “Little Ice Age” coincided with the Maunder minimum
 - 1650-1700 a period of cold winters
 - suggests some changes may have a solar origin
- Consensus: solar “forcing” may contribute to climate change
 - but it does not explain recent global warming

The Maunder minimum [http://science.nasa.gov]
My research

- Computational modelling of magnetic fields on the Sun
 - there has not been much to model!
 - the last big flaring active region was in Dec 2006

A model for the coronal magnetic field in an active region from April 2007 [Me/Hinode/XRT]
Summary

- Sunspots power solar activity
 - flares and CMEs influence our local space weather
- There is a 11-year or 22-year cycle sunspot cycle
 - we are currently at cycle minimum
 - it is proving to be a somewhat lengthy minimum
 - the Sun has lost its spots, at least temporarily
 - no-one knows what it means
- Fewer sunspots implies a reduced solar irradiance
 - the influence of activity on climate is somewhat unclear
- A list of good solar sites:
