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Background: Flares, eruptions, and space weather

» Sunspot magnetic fields power large-scale solar activity
» solar flares, large eruptive events (CMEs)

» Space weather effects motivate modeling
(US National Research Council workshop report, Baker et al. 2008)

» potential for large economic losses (Odenwald, Green & Taylor 2006)

SDO 171A image of AR 11164 (Feb 2011) which produced a number of eruptions (http://sdo.gsfc.nasa.gov/)


http://sdo.gsfc.nasa.gov/

Background: The data — vector magnetograms

Nobody can measure physical quantities of the solar atmosphere
(Del Toro Iniesta & Ruiz Cobo (1996), Sol. Phys. 164, 169)

» /Zeeman effect imprints B on photospheric lines (del Toro iniesta 2003)

» Stokes polarisation profiles /(\), Q(A), U(X), V(\) measured
» ‘Stokes inversion’ is the process of inferring magnetic field
» an inference rather than a direct measurement/observation

» 180° ambiguity in B must be resolved
(Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009)

» Vector magnetogram: photospheric map of B = (B, By, B;)

> local heliocentric co-ordinates (z radially out)
» common to neglect curvature on active region scale

» Vector magnetograms are not direct
measurements/observations

> inversion results are very method and model dependent



» In principle, VMs give BCs for coronal field modeling
» referred to as coronal magnetic field reconstruction

» Vertical current density J, may be estimated at photosphere:
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» New generation of instruments
» US NSO Synoptic Long-term Investigations of the Sun

> Vector Spectro-magnetograph (SOLIS/VSM)
(Jones et al. 2002)

» Hinode satellite

> Solar Optical Telescope Spectro-Polarimeter (SOT /SP)
(Tsuneta et al. 2008)

» Solar Dynamics Observatory satellite
> Helioseismic & Magnetic Imager (SDO/HMI)

(Scherrer et al. 2006)
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Background: Nonlinear force-free modeling

» Force-free model for coronal magnetic field B:

JxB=0 and V-B=0 (2)

» J = ,ualv X B is electric currrent density
» physics: static model in which Lorentz force dominates
» coupled nonlinear PDEs

» Writing J = aB/uo (J is parallel to B):
B-Va=0 and V xB=aB (3)

» « is the force-free parameter
Mini glossary

Model: a solution to the force-free model
Solution: a solution to the model



» Boundary conditions: (Grad & Rubin 1958)

» B, over z=20
» o over z =0 where B, > 0 or where B, <0

> « is prescribed over one polarity
> we refer to the polarities as P and N respectively

» Vector magnetograms give two sets of boundary conditions
» values of a = poJ,/B; over both P and N are available
» Methods of solution of Egs. (3) are iterative (cg Wiegelmann 2008)

» Current-field iteration/Grad-Rubin iteration (crad & Rubin 1958)
» at iteration k solve the linear system

Bl 1.Valll =0 and Vv x B =olBKk-1 (1)

» BCs imposed on B and on al¥l over P or N

Mini glossary
P solution: a solution using « values over z = 0 where B, > 0
N solution: a solution using o values over z = 0 where B, < 0



Background: The inconsistency problem

» Force-free methods work for test cases but fail for solar data
(Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008; DeRosa et al. 2009)

» e.g. P and N solutions do not agree for a Grad-Rubin method

> some force-free methods use B| _, as BCs
(Wheatland, Sturrock & Roumeliotis 2000; Wiegelman 2000)

> the ‘solutions’ have J x B # 0 and/or V - B # 0 somewhere

» Vector magnetogram BCs inconsistent with force-free model

» errors in measurements and field inference
» field at photospheric level is not force free (vetcalf et al. 1995)

» necessary conditions for a force-free field are not met
(Molodenskii 1969)

» ‘Preprocessing’ does not solve this problem

» ‘preprocess’: modify BCs to meet necessary model conditions
(Wiegelmann et al. 2006)

» preprocessed BCs remain inconsistent with the model
(DeRosa et al. 2009)

» In general different energies for P and N solutions



» lllustration of the problem: AR 10953 on 30 June 2007

Inconsistent solutions from vector magnetogram BCs: (a) P solution; (b) N solution (Wheatland & Leka 2011)



Background: Self-consistency recipe

(Wheatland & Régnier 2009; Wheatland & Leka 2011)

1. Calculate P and N solutions using Grad-Rubin (wheatland 2006; 2007)
» BCs: unpreprocessed vector magnetogram data

2. Adjust boundary values using solutions and uncertainties
» Each solution has a constant along B...

» ...so they define two sets of a values at z = 0:
apt+op and apny Eop (5)
» Each is consistent with the force-free model
» Bayesian probability is used to estimate ‘true’ values:
ap/op + an/oy
1/0% +1/0%

» Still inconsistent but closer to consistency

: (6)

Olest —

Oest — (1/0I23 + 1/UI2V)



3. lterate 1. & 2. until P and N solutions agree (st consistent)

» Step 1. uses aest for BCs at subsequent iterations

Mini glossary
Iteration: one step in a procedure, e.g. a Grad-Rubin step from kK — k + 1
Self-consistency cycle: sequence of G-R iterations to produce P and N solutions

» Self consistency provides a single energy value
» Method previously applied to AR 10953

(Wheatland & Régnier 2009; Wheatland & Leka 2011)



Modeling AR 11029: A dynamic region at deep minimum

(Wheatland 2011)

» Active reglon 11029 emerged on the disk on 21-22 Oct 2009
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Line-of-sight magnetic field 21-24 Oct (www.solarmonitor.org) STEREO A on (sohowww.nascom.nasa.gov)
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» Highly flare-productive but small (< 400 p-hemispheres)

» observed at a time with very low soft X-ray background
» 73 small GOES events: one A-class, 60 B-class, and 11 C-class
» produced many eruptions (SOHO LASCO CME catalog)
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» Largest flare was C2.2
» a departure from the power-law flare size! distribution?
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Size S: a measure of the magnitude, e.g. peak GOES flux, which is a proxy for energy.
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Flares obey a power-law size distribution: (eg Akabane 1956)
F(S) = AS™ (7)
» f(S) is number of flares per unit time, per unit S
» power-law index v ~ 1.5-2
» universal: same index at different times, in different regions

An upper limit to the power law must exist

» there is a finite amount of energy available for flaring
» however it has proven very hard to identify this
» some evidence based on many small regions (eg Kucera et al. 1997)

Is the AR 11029 distribution revealing a limit on the energy?

|dea: estimate the ‘free’ magnetic energy of the region...

» ...from self-consistent nonlinear force-free modeling
» this provides an upper limit to the energy of the largest flare
» how does it compare with the largest observed flare?



Modeling AR 11029 Data (Giichrist, Wheatland & Leka 2011)
» Magnetogram based on Hinode SP and MDI data (27 Oct)

» uncertainties from Stokes inversion
G
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Boundary conditions on B, (upper) and J, (lower) (Gilchrist, Wheatland & Leka 2011)



MOdEling AR 11029 Results (cilchrist, Wheatland & Leka 2011)

» Convergence in energy of self-consistency procedure
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» Self-consistent solution from Hinode/MDI data

» calculation on a 440 x 300 x 200 grid
» 20 Grad-Rubin iterations per cycle

Self-consistent P solution (blue curves) and N solution (red curves) (Gilchrist, Wheatland & Leka 2011)



» Energy of self-consistent solution E/Ey = 1.04
> large potential field energy: Ey = 1.7 x 1033 erg
> free energy Ef = E — Ep =6 x 103 erg
» Early self-consistency cycles do not converge strictly

» oscillations in energy (a symptom of inconsistency)
» introduces some arbitrariness in the modeling
» results depend on the number Ngr of GR iterations

» Modeling repeated with Ngr = 30

» results very similar which suggests the process is robust
» order of magnitude free energy estimate: Ef ~ 10%?erg

G-R Sol. E Eo Ef = E — EO
iterations (1033 erg ) (10¥erg)  (10% erg)
20 P 1.769 1.707 6.16
N 1.772 1.707 6.50
30 P 1.787 1.707 7.94
N 1.791 1.707 3.35



» Energy-GOES peak flux scaling from the literature
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RHESSI nonthermal electron energy estimates versus GOES peak flux for 14 flares (Gilchrist, Wheatland & Leka 2011)
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Recall the hypothesis:
» absence of large GOES events due to limited energy of region?
But Ef ~ 103 erg is consistent with an X-class flare

» the largest observed flare was C2.2
» hence the results do not support the hypothesis

SOLIS/VSM vector magnetogram data for 24 Oct available

» the region was newly emerged and smaller at this time
» the flaring rate was much smaller

Self-consistent solution energy for 24 Oct: E ~ 10%° erg
» consistent with C- or M-class flare energy



Modeling eruptive regions

» Force-free model is static so eruption is not described

» However — for magnetograms before and after eruptions:

» construct self-consistent solutions
> investigate e.g. changes in connectivity, energy

» Energy estimates may assist in forecasting eruptions...
» ...or constraining ‘largest possible’ event

» Global nature of many eruptions a difficulty for modeling

» SDO shows separate regions on disk often involved
» full disk modeling based on data is needed
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SDO 304A image of June 7 201 eruptive event (http://“s»

o.gsfc.nasa.gov/)
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Summary

» Vector magnetograms give BCs for coronal field modeling
» but the modeling is difficult

» The nonlinear force-free model is popular

» but vector magnetogram data are inconsistent with the model
» the model gives unreliable results for solar data

» the self-consistency procedure provides one solution...

» ...with a unique energy

» Self-consistency modeling for AR 11029

» motivated by non power-law flare size distribution
» hypothesis: evidence for an upper limit to region energy?

» Self-consistent magnetic free energy on 27 Oct: Ef ~ 103 erg

» based on Hinode SOT /SP magnetogram
» consistent with X-class event
» does not support hypothesis

» Application of self-consistency modeling to eruptions discussed
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