A spherical steel ball is placed near a large circular plate so that the centre of the ball lies along the axis of the plate. A **positive charge** is placed on the ball, while an **equal negative charge** lies on the plate.

1/ Where is the charge is located on the each?

1.

2.

3.

4.

5. None of the above
2/ Using field lines, approximately what does the field look like?

1.

2.

3.

4.

5. None of the above
3/ Approximately what do the equipotential surfaces look like?

1.

2.

3.

4.

5. None of the above
4/ A small **negative** test charge is brought between the two objects. How does this object’s *potential energy* vary as it is moved from A to B?

1.
2.
3.
4.

5. None of the above
5/ A is solid conducting sphere of radius R has an excess charge Q. The electrical potential at the surface of the sphere is

$$V = \frac{Q}{4\pi\varepsilon_0 R}$$

A second *uncharged* conducting sphere B of radius $R/2$ is brought to a distance $>> R$ from the first sphere.

The two spheres are connected by a fine wire. What can you say about the electrical potential of each of the two spheres now they are connected?

1. Both potentials are zero.
2. Potential of A is *twice* the potential of B.
3. Potential of A is *half* the potential of B.
4. Potential of A is *equal to* the potential of B.
5. None of the above
What can you say about the relative magnitude of the charges on the two spheres?

1. Both charges are zero.
2. Charge on A is twice the charge on B.
3. Charge on A is half the charge on B.
4. Charge on A is equal to the charge on B.
5. None of the above
Answers:

1/ answer = 4
2/ answer = 3
3/ answer = 2
4/ answer = 5
 approx. shape
 2 is obviously close

5/ answer = 4
6/ answer = 2 potentials at surface equal then formula
 implies half R needs half Q