L13 Ferromagnetism

Lecture outline:
- The mechanism of ferromagnetism
- Domains.
- Antiferromagnetism.
- Ampere's law in a magnetic material.
- Electromagnets
- Magnetic recording

L13.1 Ferromagnetism

The Mechanism of Ferromagnetism
Iron crystals are made of domains, in which the magnetic dipoles are aligned.

4 domains:
(1) Dipoles cancel, not magnetized
(2) Domains grow
(3) Some domains disappear,
(4) All dipoles aligned, saturation
L13.2 Ferromagnetism

Magnetic domains as seen in a polarizing microscope

There is a critical temperature, the Curie temperature, above which the thermal motion randomizes the domains and destroys the magnetization.

\[T_c \]

Fe 1043 K
Co 1388 K
Ni 627 K

L13.3 Ferromagnetism

Anti-ferromagnetism: interaction between neighbouring dipoles has opposite sign: adjacent moments tend to align antiparallel (paramagnetic), eg Cr, Mn.

\[\uparrow \downarrow \uparrow \downarrow \]

Ferrimagnetism:
If there are 2 unequal kinds of moments, there is a net magnetization even under complete antiparallel ordering:

Such materials are ferrites, eg lodestone, FeOFe₂O₃.
L13.4 Ferromagnetism

Consider a little loop: dipole moment \(\mathbf{m} \)

Magnetization \(\mathbf{M} = \frac{\mathbf{m}}{\text{volume}} = \frac{\mathbf{m}}{ad} \)

\[m = Mad = Ia \quad \text{so} \quad I = Md \]

and \(\frac{I}{d} = \text{“surface current density”} \quad (\text{Am}^{-1}) = M = J_{\text{surface}} \)

(compare result relating polarization to surface charge density)

L13.5 Ferromagnetism

Ampere’s law:

\[\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \oint (\mathbf{H} + \mathbf{M}) \cdot d\mathbf{s} = \mu_0 i = \mu_0 (i_{\text{free}} + i_{\text{surface}}) \]

Here \(i_{\text{surface}} = i_{\text{bound}} \) (due to internal dipoles)

\(i_{\text{free}} = \) current applied from outside

\[\overrightarrow{\mathbf{M}} = 0 \quad \text{But} \quad \mu_0 \oint \mathbf{M} \cdot d\mathbf{s} = \mu_0 I = \mu_0 i_{\text{surface}} \]

This is Ampere’s law in a magnetic material.
L13.6 Ferromagnetism

Put a magnetized sphere in a magnetic field:

\[\mathbf{M} \text{ in sphere is uniform. } \mathbf{B} \text{ is continuous (can’t start or stop).} \]

But \(\mathbf{H} \) may not be continuous:

\[\oint \mathbf{H} \cdot d\mathbf{s} = 0 \]

so \(\mathbf{H} \) may reverse in the material.

L13.7 Ferromagnetism

Magnetic shielding: put a hole in a ferromagnet. The field gets trapped in the magnet, with zero field inside hole.

(compare electrical shielding).
L13.8 Ferromagnetism

Use Ampere’s law in an iron toroid:
\[\oint H \cdot ds = i_{free} = NI = HL \]
so \(H = \frac{NI}{L} \) and \(B = \frac{NI}{\mu L} \) inside.

Example: \(N = 1000 \), \(L = 1 \text{ m} \),
so \(H = 1000 \text{ Am}^{-1} \).
From the chart, \(B = 1.15 \text{ T} \),
so \(\mu = B/H = 1.15 \times 10^{-3} \),
and \(\mu_r = \mu/\mu_0 = 1.15 \times 10^{-3}/(4\pi \times 10^{-7}) = 900. \)

School of Physics - N. Cramer and R. McPhedran 2001

L13 Ferromagnetism

Electromagnet with a gap. For a small gap, \(B \) is continuous, so \(B \) is nearly the same in the iron and the gap.

Now \(H \) in the iron is \(H_1 = \frac{B}{\mu} = \frac{B}{\mu_r \mu_0} \)
and \(H \) in the gap is \(H_2 = \frac{B}{\mu_0} \)
so \(\oint H \cdot ds = H_1L + H_2l = \frac{BL}{\mu_r \mu_0} + \frac{Bl}{\mu_0} = NI \)
\(\therefore B = \frac{\mu_0 NI}{L/\mu_r + l} \approx \frac{\mu_0 NI}{l} \) because \(\mu_r \) is very big.

Example: \(L = 1 \text{ m}, l = 1 \text{ cm}, N = 1000 \), then \(B = 4\pi \times 10^{-7} \times 1000/0.01 = 0.13 \text{T} \)

School of Physics - N. Cramer and R. McPhedran 2001
L13.10 Ferromagnetism

For a permanent magnet, $i = 0$, so

$$H_1L + H_2l = 0 \Rightarrow H_{iron} = -\frac{H_{gap}}{L} = -\frac{Bl}{\mu_0 L}$$

(note the minus sign)

Example: $L = 1m$, $l = 1cm$, $B = 0.1T$,

$$H_{gap} = \frac{B}{\mu_0} = \frac{0.1}{4\pi \times 10^{-7}} \approx 80000 \text{ Am}^{-1} \quad \text{and} \quad H_{iron} = -800 \text{ Am}^{-1}$$

L13.11 Ferromagnetism

Magnetic recording:

There are 3 heads: erase, write and read. The tape with magnetic coating moves over the heads. At the gap in the electromagnet, there is a fringing magnetic field that extends over the tape.

In writing, the time variation in the field is translated to a space varying magnetization in the moving tape.
L13.12 Ferromagnetism

Audio tape uses needle-like particles of Fe₂O₃ or CrO₂ (~ 1µm), on a substrate of mylar (a polyester).

The spatial frequency translates to an audio frequency (analogue).
Video tape is similar.
In reading, the changing field in the tape induces a signal in the coil.

Computer disks store information digitally, as bits. Domains are magnetized in up or down direction.

Field of view 30µm.