Applications of SHM and Energy

Pre-reading: §14.1–14.3

Simple Harmonic Motion

- Suppose the restoring force varies linearly with displacement from equilibrium:
 \[F(t) = -k x(t) \]
- Then the displacement, velocity, and acceleration are all sinusoidal functions of time,
 - This defines Simple Harmonic Motion (SHM)
- Period/frequency depend only on \(k \) and \(m \) with
 \[\omega = \sqrt{\frac{k}{m}} \]
 (does not depend on amplitude!)

Example 14.2

- a) What is the force constant of the spring?
- b) What is the angular frequency, frequency, and period of oscillation?

Energy and SHM

- Total energy in an SHM system is conserved
 - does not change with time
- Components of energy oscillate between kinetic and potential
 \[E = \frac{1}{2} m v^2 + \frac{1}{2} k x^2 - \frac{1}{2} k x^2 = \text{constant} \]
- Offers alternative approach to find \(x, v, a \)

Example 14.4

Same spring, \(k = 200 \text{ N/m} \)

- What is max/min velocity? acceleration?
- What is \(v, a \) when \(x = +0.010 \text{ m} \)?
- What is total, potential, and kinetic energy at \(x = +0.010 \text{ m} \)?

SHM: Vertical Springs

- IMPORTANT: Set up coordinate system!!
- Motion of vertical spring is described by simple harmonic motion with
 \[\omega = \sqrt{\frac{k}{m}} \]
Next lecture

Pendulums, and Resonance

Read §14.5–14.8