Week 4 – Fourier series and analysis

Periodic motion is by far the most common type of motion in the universe.

Three basic categories:

1. Rotations: nuclei, electrons in atoms, molecules,…, earth, planets.
2. Vibrations: nuclei, molecules,…, heart, tides, sun.

The fundamental equation that governs all periodic motion is that of a simple harmonic oscillator (SHO)

\[\ddot{x} = -\omega^2 x \]

With solution: \[x(t) = A \cos \omega t + B \sin \omega t \]
Most periodic motions, however, are more complicated than SHO because they involve many coupled oscillators. For n-coupled oscillators, there are n-normal modes with frequencies

$$\omega_i, i = 1, n$$

The general solution is obtained by superposing all the normal modes

$$x_k(t) = \sum_{i=1}^{n} A_{ki} \cos \omega_i t + B_{ki} \sin \omega_i t$$

This is a considerably more complicated function than the SHO.

To get a feeling for a particular solution, we can use Matlab to synthesize it and plot the result. Conversely, given some observed motion, we can perform a Fourier analysis to determine whether it is periodic and find the dominant frequencies in its spectrum.
A simple example of coupled oscillators: n beads on a string

Consider the motion of bead 2:

Force due to tension

\[F_2 = -T \left(\frac{x_2 - x_1}{l} \right) + T \left(\frac{x_3 - x_2}{l} \right) \]

Equation of motion

\[m \ddot{x}_2 = -\frac{T}{l} (-x_1 + 2x_2 - x_3) \]

\[\dot{x}_2 = -\omega_0^2 (-x_1 + 2x_2 - x_3), \quad \omega_0^2 = \frac{T}{ml} \]
The same equation of motion applies to all the beads with the provision that

\[x_0 = x_{n+1} = 0 \]

To find the normal modes, assume \[\dot{x}_k = -\omega^2 x_k \quad \text{for all } k \]

\[
\omega_0^2 \begin{pmatrix}
2 & -1 & 0 & & & \\
-1 & 2 & -1 & & & \\
0 & -1 & 2 & \ddots & & \\
& & & \ddots & -1 & 0 & \\
& & & & -1 & 2 & -1 & \\
& & & & 0 & -1 & 2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_{n-1} \\
x_n
\end{pmatrix}
= \omega^2
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_{n-1} \\
x_n
\end{pmatrix}
\]
Solution by inspection:
Consider the equation of motion for the kth bead

$$\omega_0^2 (-x_{k-1} + 2x_k - x_{k+1}) = \omega^2 x_k$$

Rewrite it in the form

$$\frac{x_{k-1} + x_{k+1}}{x_k} = \frac{2\omega_0^2 - \omega^2}{\omega_0^2}$$

This equation is satisfied for all k provided $x_0 = x_{n+1} = 0$

The only functions that satisfy such a relationship are exp, sin and cos.

$$\frac{e^{(k+1)\theta} + e^{(k-1)\theta}}{e^{k\theta}} = e^\theta + e^{-\theta}$$

Exp and cos does not vanish at $k=0$, so it must be sin
(sinh is also possible but it does not vanish at $k=n+1$)
Thus the amplitude of x_k is proportional to $\sin(k\theta)$.

To find θ, we use the second boundary condition:

$$\sin((n + 1)\theta) = 0 \quad \rightarrow \quad (n + 1)\theta = m\pi, \quad m = 1, 2, \ldots, n$$

So the amplitudes in the m'th normal mode are given by

$$A_{mk} = C_m \sin \frac{mk\pi}{n + 1}$$

To find the eigen frequencies, use this result in

$$\frac{x_{k-1} + x_{k+1}}{x_k} = \frac{2\omega_0^2 - \omega^2}{\omega_0^2} = 2\cos\left(\frac{m\pi}{n + 1}\right)$$

$$\omega_m = 2\omega_0 \sin \frac{m\pi}{2(n + 1)}$$
Using these values, we can construct the general solution as

\[x_k(t) = \sum_{m=1}^{n} \sin\left(\frac{mk\pi}{n+1}\right) \left[C_m \cos \omega_m t + C'_m \sin \omega_m t \right] \]

The amplitudes are determined from the initial conditions

E.g. if \(x_k(0) = X_k \), \(\dot{x}_k(0) = Y_k \)

\[\sum_{m=1}^{n} \sin\left(\frac{mk\pi}{n+1}\right) C_m = X_k, \quad k = 1, \ldots, n \]

\[\sum_{m=1}^{n} \sin\left(\frac{mk\pi}{n+1}\right) \omega_m C'_m = Y_k, \quad k = 1, \ldots, n \]

This system of linear equations can be solved using Matlab.
Example: n=4 beads, generate the sine matrix

```matlab
>> for k=1:4; for m=1:4;
    A(m,k)=sin(m*k*pi/5);
end; end;

>> A
A =
 0.5878   0.9511   0.9511   0.5878
 0.9511   0.5878  -0.5878  -0.9511
 0.9511  -0.5878  -0.5878   0.9511
 0.5878  -0.9511   0.9511  -0.5878

>> X=[1 1 1 1]'; Y=0

>> C=(A\X)'
C =
 1.2311   0.0000   0.2906   0.0000
```
Frequencies of the normal modes

>> for m=1:4
w(m)=2*sin(m*pi/10);
end

>> w
w =

0.6180 1.1756 1.6180 1.9021

So the solution for this initial condition is:

\[
\begin{pmatrix}
 x_1(t) \\
 x_2(t) \\
 x_3(t) \\
 x_4(t)
\end{pmatrix} =
\begin{pmatrix}
 0.5878 & 0.9511 & 0.9511 & 0.5878 \\
 0.9511 & 0.5878 & -0.5878 & -0.9511 \\
 0.9511 & -0.5878 & -0.5878 & 0.9511 \\
 0.5878 & -0.9511 & 0.9511 & -0.5878
\end{pmatrix}
\begin{pmatrix}
 1.2311 \cos \omega_1 t \\
 0 \\
 0.2906 \cos \omega_3 t \\
 0
\end{pmatrix}
\]
Solution for the first bead:

\[x_1(t) = 0.7236 \cos 0.618t + 0.2764 \cos 1.618t \]

To visualize the solution, plot it in Matlab

\[
\begin{align*}
&>> t=1:0.5:400; \\
&>> f=0.7236*\cos(0.618*t)+0.2906*\cos(1.618*t); \\
&>> \text{plot}(t,f)
\end{align*}
\]

A better way to get an intuitive feeling for the solutions is to animate the positions of the 4 beads as a function of time, e.g., using a bar graph.
Continuum limit \((n \to \infty)\)

When the number of beads are very large, we can take a continuum limit

Introduce total mass and length: \(M = n\mu, \quad L = nl\)

\[
\omega_m^2 = 4 \frac{T}{\mu l} \sin^2 \frac{m\pi}{2(n+1)} \quad \xrightarrow{n \to \infty} \quad 4T \frac{m^2\pi^2}{\mu l 4n^2} = \frac{\pi^2 m^2 T}{ML}
\]

Thus the normal mode frequencies become multiples of the fundamental frequency

\[
\omega_m = m\omega_1, \quad \omega_1 = \sqrt{\frac{\pi^2 T}{ML}}
\]

\[
y_m(x,t) = C_m \sin \left(\frac{m\pi x}{L} \right) \cos \omega_m t
\]

General solution: \(y(x,t) = \sum_{m=1}^{\infty} C_m \sin \left(\frac{m\pi x}{L} \right) \cos m\omega_1 t\)
Vibrations in a two-dimensional system (e.g. membranes) can be analysed in a similar manner

$$z(x, y, t) = C(n_1, n_2) \sin \left(\frac{n_1 \pi x}{L_x} \right) \sin \left(\frac{n_2 \pi y}{L_y} \right) \cos \omega_{12} t$$

The normal mode frequencies are given by

$$\omega_{12}^2 = \frac{SL_x L_y}{M} \left[\left(\frac{n_1 \pi}{L_x} \right)^2 + \left(\frac{n_2 \pi}{L_y} \right)^2 \right]$$

Where S is the surface tension, and M is the mass.

For equal lengths

$$\omega_{12}^2 = \omega_0^2 (n_1^2 + n_2^2), \quad \omega_0^2 = \frac{\pi^2 S}{M}$$
Fourier series

Any function $f(x)$ in a finite interval $[-L/2, L/2]$ can be represented by a series of sines and cosines

$$f(x) = \frac{1}{2} A_0 + \sum_{m=1}^{\infty} \left[A_m \cos\left(\frac{2\pi mx}{L}\right) + B_m \sin\left(\frac{2\pi mx}{L}\right) \right]$$

The sines and cosines form an orthogonal set, that is

$$\int_{-L/2}^{L/2} \sin\left(\frac{2\pi mx}{L}\right) \sin\left(\frac{2\pi nx}{L}\right) \, dx = \begin{cases} L/2 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

$$\int_{-L/2}^{L/2} \cos\left(\frac{2\pi mx}{L}\right) \cos\left(\frac{2\pi nx}{L}\right) \, dx = \begin{cases} L/2 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

$$\int_{-L/2}^{L/2} \sin\left(\frac{2\pi mx}{L}\right) \cos\left(\frac{2\pi nx}{L}\right) \, dx = 0$$
Thus we can determine the coefficients by integrating sin (or cos) times \(f(x) \)

\[
\int_{-L/2}^{L/2} f(x) \begin{cases} \sin & \text{if } m \neq 0 \\ \cos & \text{if } m = 0 \end{cases} \, dx = \int_{-L/2}^{L/2} \left\{ \frac{1}{2} A_0 + \sum_{m=1}^{\infty} A_m \cos \left(\frac{2\pi m x}{L} \right) + B_m \sin \left(\frac{2\pi m x}{L} \right) \right\} \begin{cases} \sin & \text{if } m \neq 0 \\ \cos & \text{if } m = 0 \end{cases} \, dx
\]

The right hand side is non-zero only for one value of \(m \), which yields

\[
A_m = \frac{2}{L} \int_{-L/2}^{L/2} f(x) \cos \left(\frac{2\pi m x}{L} \right) \, dx
\]

\[
B_m = \frac{2}{L} \int_{-L/2}^{L/2} f(x) \sin \left(\frac{2\pi m x}{L} \right) \, dx
\]

The fourier series arise in solutions of differential equations with a finite boundary, e.g.:

Laplace and Poisson equations (E&M), Heat equation (thermodynamics, Schröedinger equation (quantum mechanics)
Discrete Fourier transform (DFT)

Very commonly, an observable is sampled at evenly spaced time intervals, e.g., its value is recorded at every Δt seconds, which is called the sampling rate.

Inverse of $2\Delta t$ is called the Nyquist critical frequency ($f = \omega / 2\pi$)

$$f_c = \frac{1}{2\Delta t}$$

Sampling theorem: If a continuous function is band-width limited to frequencies smaller than f_c, then it is completely determined by its samples.

Aliasing effect: Conversely, if a function is not band-width limited to frequencies smaller than f_c, then the frequency components greater than f_c are falsely translated.
Consider a data set \(x_k \) sampled at equal intervals \(N \) times:

\[
\{x_0, x_1, \ldots, x_{N-1}\}
\]

Its discrete Fourier transform is given by

\[
X_n = \sum_{k=0}^{N-1} e^{2\pi i nk/N} x_k, \quad n = 0, 1, \ldots, N - 1
\]

This can be written in terms of sines and cosines as

\[
X_n = \sum_{k=0}^{N-1} \cos\left(\frac{2\pi nk}{N}\right)x_k + i \sum_{k=0}^{N-1} \sin\left(\frac{2\pi nk}{N}\right)x_k
\]

Inverse DFT \(x_k = \frac{1}{N} \sum_{n=0}^{N-1} e^{-2\pi i kn/N} X_n \)

Thus DFT transforms \(N \) (complex) numbers into \(N \) (complex) numbers
Introduce the n’th root of unity: $z = e^{2\pi i / N}$

The DFT can be written as

$$X_n = \sum_{k=0}^{N-1} z^{nk} x_k$$

In matrix form:

$$
\begin{pmatrix}
X_0 \\
X_1 \\
X_2 \\
\vdots \\
X_{N-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & z & z^2 & \cdots & z^{N-1} \\
1 & z^2 & z^4 & \cdots & z^{2N-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & z^{N-1} & z^{2N-2} & \cdots & z^{(N-2)^2}
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
\vdots \\
x_{N-1}
\end{pmatrix}
$$
Fast Fourier transform (FFT)

The matrix multiplication in DFT requires about N^2 operations.

In FFT the number of operations is reduced to $N \cdot \log N$.

Assume N is even, so that $N/2$ is an integer

$$X_n = \sum_{k=0}^{N-1} e^{2\pi ink/N} x_k$$

$$= \sum_{j=0}^{N/2-1} e^{2\pi in(2j)/N} x_{2j} + \sum_{j=0}^{N/2-1} e^{2\pi in(2j+1)/N} x_{2j+1}$$

$$= \sum_{j=0}^{N/2-1} e^{2\pi inj/(N/2)} x_{2j} + z^n \sum_{j=0}^{N/2-1} e^{2\pi inj/(N/2)} x_{2j+1}$$

$$= X_n^e + z^n X_n^o$$

If $N/2$ is also even, we can apply the same procedure to the new set.
In FFT, the number of data points is chosen as N=2^p.
Then the above process can be carried out p times, which results in one-point DFT for each of the N values generated.
Working ones way back requires repeated addition and subtraction of these values weighted by the powers of z (p times).
Matlab has special functions for this purpose:
fft: finds the DFT of a given sample using FFT
ifft: finds the inverse DFT
Assuming x is a sample of N data point
>> y=fft(x)
returns N complex numbers that correspond to DFT.
The absolute square of y plotted against the frequency provides the spectral information (periodogram).