EVOLUTION OF QUANTUM THEORY
Chapter 28
Hecht: Calculus 2nd ed.

More hydrogen lines

• Other series of hydrogen lines were discovered

\[\frac{1}{\lambda} = R \left(\frac{1}{n^2} - \frac{1}{n^3} \right) \]

Paschen series (in the IR) for \(n \geq 4 \)

\[\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{n^2} \right) \]

Balmer series (starts in Vis) for \(n \geq 3 \)

\[\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{n^2} \right) \]

Lyman series (in the UV) for \(n \geq 2 \)

All approach a "series limit" as \(n \to \infty \)

• However, nobody understood the significance of these simple relationships.

Ho hum, some definitions...

• Total Absorptivity \(\alpha \) (or "Absorptance")

fraction (or %) of total incident EM radiation absorbed by a surface averaged over a large range of \(\lambda \)
e.g. "Total solar absorptance" is the fraction of total solar radiation absorbed

• Absorption Coefficient \(\alpha_\lambda \):

fraction (or %) of incident EM radiation absorbed at a particular \(\lambda \)

If I leave out the \(\lambda \) bit, it means "total absorptivity"

…and so what is Black?

• An object looks black (e.g. soot) because visible reflectance \(R \approx 0 \) (i.e. visible absorptance \(\alpha \approx 1 \) or 100%)

Black road gets hotter in sun than white footpath

• Perfectly black \(\Rightarrow \alpha_\lambda = 1 \) for all wavelengths \(\lambda \), hard to do for all \(\lambda \) with pigments!

(Note: Perfectly white \(\Rightarrow \alpha_\lambda = 0 \) & \(R_\lambda = 1 \) or 100%)

• Cavity with a small aperture is a virtually perfectly black object ("black body") even if not black inside

The aperture behaves exactly like a highly absorbing surface.

Red-hot Physics

• You can feel "radiant heat" (IR) from hot objects

Human skin highly absorbing (\(\alpha_{IR} \approx 1 \)) in the IR

• As T\(^\uparrow \) greater power emitted

• As T\(^\uparrow \) above ~400°C objects emit noticeable intensity of visible light:

red hot \(\rightarrow \) orange hot \(\rightarrow \) yellow hot \(\rightarrow \) white hot

• What does this spectrum look like?

And why?
Stefan-Boltzmann Law

- Total power (Watts) emitted by a black body is:
 \[P = \varepsilon \alpha AT^4 \] (S-B law)
 \[A(m^2), \quad \alpha = 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4) \text{ (S-B constant)} \]
 For non-black objects power is smaller; \(P = \varepsilon \alpha AT^4 \)
 \(\varepsilon \) = "total emissivity" or "emittance" so units (\(\varepsilon = 1 \) for blackbody)

- Kirchoff's radiation law
 "@ equilibrium, power absorbed = power emitted" implies that \(\varepsilon = \alpha \), where \(\alpha \) is absorptance averaged over the spectrum emitted by a black body @ temperature \(T \)

\[\varepsilon \leq 1 \text{ always!} \]

Text Example 28.1

- 10 cm cube \(T = 400^\circ \text{C} \), total emissivity = 0.97
 Find rate at which it radiates energy from each face

- Solution:
 \[P = \varepsilon \alpha AT^4 \]
 Area per face \(A = (0.1 \text{ m})^2 = 0.01 \text{ m}^2 \)
 \[T = 400^\circ \text{C} + 273 = 673 \text{ K}, \quad \varepsilon = 0.97 \]
 \[P = 0.97 \times 5.67 \times 10^{-8} \times 0.01 \times 673^4 \]
 \[= 112.8 \approx 110 \text{ W} \]

But what COLOUR is BB radiation?

BB spectrum is continuous with broad peak @ \(\lambda_p \)

- Wien's displacement law; \(\lambda_p = \frac{b}{T} \) (empirical result)
 where \(b = 2.898 \times 10^{-8} \)

Rayleigh & Jeans failed to explain BB spectrum using "classical" theory. Their equations predicted that intensity would blow up to \(\infty \) as \(\lambda \) decreased

ultraviolet catastrophe

Text Example 28.2

- Assume human skin is BB in IR & \(T_{\text{skin}} = 33^\circ \text{C} \).
 Find wavelength at which humans radiate their maximum intensity

- Solution:
 \[\lambda_p = \frac{b}{T} \]
 \[b = 2.898 \times 10^{-8}, \quad T = 33^\circ \text{C} + 273 = 306 \text{ K} \]
 \[\lambda_p = 2.898 \times 10^{-8}/306 = 9.5 \times 10^{-8} \text{ m} = 9.5\mu m \]

A Hint of Revolution

- Planck also tried to explain BB spectrum applying classical theory to cavity radiator.
- Eventually (1900) he obtained correctly-shaped spectrum by assuming that walls of cavity absorbed and emitted EM radiation only in packets or "quanta" of energy;
 \[E = hf \]
 where Planck's constant \(h = 6.626 \times 10^{-34} \text{ Js} \)
- Huh?! Nothing in classical physics predicted this
Environmental: Radiation Module 17
Einstein & the Photoelectric effect

• Planck derived a formula for the shape of the BB spectrum which fitted all experimental data...

\[I = \frac{2\pi hc}{\lambda^5} \left[\frac{1}{e^{hc/\lambda kT} - 1} \right] \]

...but he regarded \(E = hf \) as a mathematical convenience and not a deep truth about light

Note: Sometimes we use a different version of Planck's constant:

\[\hbar = \frac{h}{2\pi} = 1.0546 \times 10^{-34} \text{Js} \]

Environmental: Radiation Module 13
So what's the final answer?

• but he regarded \(E = hf \) as a mathematical convenience... of the BB spectrum which fitted all experimental data...

Note: Sometimes we use a different version of Planck's constant:

\[h = \hbar = 1.0546 \times 10^{-34} \text{Js} \]

Environmental: Radiation Module 15
Photoelectric effect; What the..?!

• Reversing the voltage ("stopping potential") proved the \(e^- \) have a maximum energy \((KE_{max} = V_i e^-) \)

\[f_{max} \text{ depends on which metal is used} \]

\[KE_{max} \text{ increases linearly with frequency} \]

• NO photocurrent for light frequency < \(f_{min} \) no matter how intense

• \(KE_{max} \) increases linearly with frequency.

• Huh! How very unclassical

Environmental: Radiation Module 17
Einstein & the Photoelectric effect

• \(e^- \) need a minimum energy ("work function" + \(\phi \)) to leave metal. Each metal has different \(\phi \)

If \(h f < \phi \) then NO \(e^- \) ejected (i.e. \(h f_{min} = \phi \)).

If \(h f > \phi \) then some energy leftover from \(\phi \rightarrow KE \)

\[eV_i = KE_{max} = hf - \phi \]

(For \(e^- \); \(E = eV \))

Plot \(KE_{max} \) vs \(f \); then slope = \(h \)

If \(h f > \phi \) then intensity means \(\uparrow \) \(e^- \) photons \(\uparrow \) current.

Environmental: Radiation Module 18
Another crisis! Photoelectric effect

Hertz; X-rays, UV or Visible light causes \(e^- \) to be ejected from surface of metals (1887)

• Photocurrent proportional to light intensity (seems to make sense; more intensity, more energy, more \(e^- \) get enough energy to be ejected)

Environmental: Radiation Module 16
That young upstart Einstein

Einstein went wild with Planck's formula. He supposed that light is actually composed of a stream of particles (now called photons) each with energy

\[E = hf \]

• \(\uparrow \) light intensity means \(\uparrow \) \(e^- \) photons per second

• \(\uparrow \) light frequency means \(\uparrow \) energy per photon

Like atoms in the walls of Planck's BB cavity, \(e^- \) in the metal could only absorb one single photon at a time.

Environmental: Radiation Module 17
Example: See problem 27 (Ch28)

• Find threshold frequency \((f_{min}) \) if 220nm photons incident on a metal liberate electrons with a stopping voltage of 3.81V. (Remember; \(c = f \lambda \))

Solution:

\[KE_{max} = eV_{stop} = hf - \phi = hf - h f_{min} \]

\[KE_{max} = 1.60 \times 10^{-19} \cdot 3.81V = 6.10 \times 10^{-19}J \]

\[h f_{min} = hf - KE_{max} \Rightarrow f_{min} = f - (KE_{max})/h \]

\[f_{min} = 3.00 \times 10^{9}/220 \times 10^{-9} - 6.10 \times 10^{-19}/6.63 \times 10^{-34} \]

\[f_{min} = 4.43 \times 10^{14} \text{Hz} \]
Left with embarrassing problem

- *But I thought light was a wave*

- Einstein;
 Sometimes light behaves as particles (when being absorbed or emitted) & sometimes as waves (when travelling through open space)

- "Wave-particle duality"

Yet another definition

- Energy of particles is often measured electrically using $E = qV$ so it is often convenient to express energy in electrical units
- 1 electron volt (or eV) is energy gained by an electron (or any singly charged particle) when accelerated though potential difference of 1 volt
- To convert from energy in Joules to eV;

 $$E(eV) = E(Joules)/e$$

 where $e = 1.602 \times 10^{-19}$ coulombs

Remember this

You should remember the following conversions;

- Wavelength of visible spectrum ranges from

 780nm (red end) to 390nm (violet end)

- In eV, this is approximately;

 1.6eV (red end) to 3.2eV (violet end)