In the last episode of the show...

- Photons (massless) are both particles & waves;
- Particles of matter are both particles & waves;

\[E = hf \quad \text{&} \quad p = \frac{h}{\lambda} \]

& for particles (de Broglie):

\[p = mv = \sqrt{2mK} = \frac{h}{\lambda} \]

Text Example 29.1

- Calculate de Broglie \(\lambda \) for \(\text{e}^- \) accelerated through 110V. Compare with typical X-ray wavelength.

Assume non-relativistic speed i.e. \(K = \frac{1}{2}mv^2 \)

- Solution: 1st find electron kinetic energy:

\[K = \frac{1}{2}mv^2 = \frac{1}{2} \cdot 1.60 \times 10^{-19} \cdot 1.76 \times 10^{-17} = 1.76 \times 10^{-34} \text{J} \]

\[v = \sqrt{2K/m} = \sqrt{2 \cdot 1.76 \times 10^{-34}/9.11 \times 10^{-31}} = 6.22 \times 10^6 \text{ms}^{-1} \]

\[p = mv = 6.22 \times 10^6 \cdot 9.11 \times 10^{-11} = 5.66 \times 10^{-34} \text{kg ms}^{-1} \]

\[\lambda = \frac{h}{p} = 6.63 \times 10^{-34}/5.66 \times 10^{-34} = 1.17 \times 10^{-10} \text{m} \]

- same wavelength range as X-rays \(\therefore \) can do "wave-like"\(\text{e}^- \) diffraction experiments with a crystal

Follow-up Example

- Calculate de Broglie \(\lambda \) for a tennis ball (57 g) with speed 50.0ms\(^{-1}\).

- Solution:

\[p = mv = 5.7 \times 10^{-2} \text{kg} \cdot 50 \text{ms}^{-1} = 28.5 \text{ kg ms}^{-1} \]

\[\lambda = \frac{h}{p} = 6.63 \times 10^{-34}/28.5 = 2.33 \times 10^{-34} \text{ m} \]

which is so small (atom spacing ~10\(^{-10}\)m) that one could never measure its wave properties. Definitely "particle-like"

Complementarity Principle (Bohr)

- Particle-like properties and wave-like properties are complementary, 2 sides of a coin i.e. not apparent at the same time. 🧵

- Mathematical example:

Remember; \(p = \frac{h}{\lambda} \) & \(E = hf = h/T \) (\(T \) = wave period)

\[E \& p \text{ are particles-like properties. } T \& \lambda \text{ are wave-like properties. If } E \& p \text{ are large then } T \& \lambda \text{ are too small to detect and vice-versa} \]

Schrödinger's Wave Equation

Schrödinger developed a more general equation than de Broglie's equations; \(E = hf \) & \(p = \frac{h}{\lambda} \)

The function which describes a de Broglie wave is called "wavefunction" \(\psi(x) \) (or \(\psi \) for simplicity)

Start with classical mechanics equations;

- \(K = \frac{1}{2}mv^2 = p^2/2m \)
- \(E = E_{\text{kin}} + E_{\text{pot}} = p^2/2m + U \)

But \(p^2 = h^2/\lambda^2 \) so \(E_{\text{kin}} = \frac{h^2}{2m\lambda^2} \)

- To find \(E_{\text{kin}} \) we need a method to extract \(\lambda^2 \) from \(\psi(x) \)

Schrödinger's Wave Equation 2

- Use simplest example of a wavefunction \(\psi \):

\[\text{e.g. } \psi = \sin(\frac{2\pi x}{\lambda}) \]

- Let's try taking "double derivative":

\[\frac{d^2\psi}{dx^2} = -\left(\frac{2\pi}{\lambda}\right)^2 \sin \left(\frac{2\pi x}{\lambda}\right) = -\frac{4\pi^2}{\lambda^2} \psi \quad \text{but} \quad E_{\text{kin}} = \frac{h^2}{2m\lambda^2} \]

\(\times \) both sides of equation by \(\frac{\hbar^2}{2m} \):

\[\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} = E_{\text{kin}} \psi \]

\(K \equiv -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \) ("kinetic energy operator") & so...
Schrödinger's Wave Equation!
\[\frac{-\hbar^2}{2m} \frac{d^2\psi}{dx^2} + U\psi = E\psi \]
- We used a simple sine wave to show this, but it's true for all quantum wavefunctions.
- To find a wavefunction \(\psi(x) \), substitute in a function to represent potential energy \(U \) and solve. "differential equation"

DON'T PANIC...

P.S. This treatment is only meant to be qualitative. You don't need to derive or solve this equation in the exam.

Wavefunction & probability
- Consider a simple wavefunction \(\psi \) for a single particle
- Square it to find probability density \(\psi^2 \)
- Black arrows \(\downarrow \) mark positions where the particle is most likely to be found
- Red arrows \(\uparrow \) mark positions where the particle is least likely to be found
- "Found" means, absorbed, detected, scattered etc. in other words, any experiment which reveals the particle-like property "position".

What is a wavefunction?
- A "ripple" is a wave on the surface of water
- Sound is a pressure wave in air
- Light is wave in the electromagnetic field

\(\psi \) So what kind of wave is a quantum wavefunction?
\(\psi \) Max Born 1926; \(\psi(x) \) is a wave of probability. The probability of finding the particle at a particular position is proportional to the square of the wavefunction \(\psi^2(x) \) at that position.
- \(\psi^2 \) is called "probability density"

In 2 places at once..
- Young's double slit:
 - Reduce intensity until only one photon (particle) at a time passes through slits then appears on the screen. (Permanently record photon positions).
 - At first pattern of photons appears random, but after a long time, all the individual photons build up to reveal an interference pattern (wave property).
 - Which slit did each photon go through? BOTH at the same time! Can only get interference if wave passes through both slits. HUH?!!
- Also works with beams of \(\text{e}^- \), individual atoms and (theoretically?) human beings

Please stop freaking me out
- Exactly when \& where photon (or \(\text{e}^- \) etc.) appears is random, but its probability is proportional to \(\psi^2 \).
 - On small scale a particle "trajectory" has little meaning.
 - @ the moment photon is detected (converted to a flash) its wave-like, spread-out wavefunction "collapses" to be replaced by a concentrated particle-like wavefunction.
 - "Collapse of the wavefunction" is not yet understood but is believed to be instantaneous.
- The act of measuring particle position causes the wavefunction to collapse into a definite position.
- Is the moon really there if no one's there to see it?