Modeling a falling slinky

M. S. Wheatland and R. C. Cross

School of Physics
The University of Sydney

Research Bite
7 June 2012

The fall of a plastic rainbow-coloured slinky.
Overview

Background

Slinky physics and the fall

Waves on slinkies

Modeling the fall

Improving an existing model

Comparison with real slinkies

Conclusions
Background: Slinky physics

- Slinkies are useful physics demonstration devices
 - hanging configuration (e.g. Mak 1993)
 - vertical modes of oscillation when suspended (e.g. Young 1993)
 - wave propagation/dispersion (e.g. Crawford 1987; Vandegrift et al. 1989)
 - peculiar dynamics when falling (e.g. Calkin 1993; Aguirregabiria et al. 2007)

- Slinkies are tension springs\(^1\)
 - under tension subject to Hooke’s law but not compression
 - they collapse to a state with turns in contact
 - tension is required to separate collapsed turns

- A slinky suspended from its top and dropped ...
 - collapses from the top down
 - the bottom remains hanging (≈ 0.3 s) during the collapse!

\(^1\) Compression springs (the other type of spring) may be under compression or tension according to \(F = -kx\). They have separated turns in a relaxed state, with zero tension.
For movies, see: www.physics.usyd.edu.au/~wheat/slinky/.
Background: Waves on slinkies

- Collapse of tension occurs from the top down
 - a (tension) wave propagates down the slinky
 - the tension remains ahead of the wave front
 - turns collapse behind the wave front
- Uncollapsed slinky turns are described by a wave equation:

\[
m \frac{\partial^2 x}{\partial t^2} = k \frac{\partial^2 x}{\partial \xi^2} + mg
\] (1)

- \(m \) is slinky mass, \(k \) is spring constant
- \(x = x(\xi, t) \) is the vertical location of a point on slinky
- coordinate \(\xi \) defines mass fraction: \(dm = m d\xi \) and \(0 \leq \xi \leq 1 \)
 - so \(\xi_i = i/N \) is the end of turn \(i \) (for an \(N \)-turn slinky)
- Eq. (1): waves in turn spacing propagate
 - characteristic propagation time along slinky:

\[
t_p = \sqrt{m/k}
\] (2)

\(^2\)For typical slinkies \(m \approx 0.2 \text{ kg} \) and \(k \approx 0.8 \text{ N/m} \) giving a characteristic time \(t_p \approx 0.5 \text{ s.} \)
Modeling the fall: Improving an existing model

- Solving the equation of motion directly is tricky
 - Eq. (1) applies until turns collide
 - the tension-spring behaviour complicates the description
- An earlier model used a semi-analytic approach: (Calkin 1993)
 - wave front assumed to be at \(\xi_c = \xi_c(t) \) at time \(t \)
 - behind the front: the turns are collapsed
 - ahead of the front: the hanging configuration (right)
 - calculate the total momentum implied by this
 - set equal to the impulse \(mgt \) at time \(t \) and solve for \(\xi_c \)
 - total collapse time (bottom starts to fall):\(^a\)

\[
t_c = \sqrt{\frac{m}{3k} \xi_1^3} = \sqrt{\frac{1}{3} \xi_1^3} t_p
\]

- \(1 - \xi_1 \) is fraction of hanging slinky collapsed at bottom

\(^a\)For typical slinky parameters, with \(\xi_1 = 0.9 \), the total collapse time is \(t_c \approx 0.24 \text{ s} \).
Problem: turns collapse instantly at the front in the model
 for real slinkies: a finite time for turns to come together

An improved model: (Cross & Wheatland 2012)
 same semi-analytic approach but ...
 ... including a finite time for collapse behind the front
 tension relaxes linearly over a fixed number of turns
 the total collapse time is unchanged

Movies of the slinky fall and the model:

Modeling the fall: Comparison with real slinkies

- Rod dropped slinkies and filmed them at 300 frames/s
 - position of turns with time extracted from frames
 - position of top fitted to model to determine parameters:
 - spring constant, collapse parameter, time of release
- Two slinkies with different properties considered
 - slinky A is a metal slinky
 - slinky B is the plastic rainbow-coloured slinky

<table>
<thead>
<tr>
<th></th>
<th>Slinky A</th>
<th>Slinky B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td>215.5</td>
<td>48.7</td>
</tr>
<tr>
<td>Collapsed length (mm)</td>
<td>58</td>
<td>66</td>
</tr>
<tr>
<td>Stretched length (m)</td>
<td>1.26</td>
<td>1.14</td>
</tr>
<tr>
<td>Number of turns</td>
<td>86</td>
<td>39</td>
</tr>
</tbody>
</table>
An independent test of the model parameters:

- the spring constant k is a fitted parameter
- fundamental period T_0 depends on this: \((\text{Young 1993}) \)

\[
T_0 = 4\sqrt{\frac{m}{k}} = 4t_p
\]

Rod measured T_0 for each slinky ...

<table>
<thead>
<tr>
<th></th>
<th>Slinky A</th>
<th>Slinky B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model T_0 (s)</td>
<td>2.23</td>
<td>1.88</td>
</tr>
<tr>
<td>Observed T_0 (s)</td>
<td>2.18</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Consistent after taking uncertainties into account
Conclusions

► Slinkies are useful physics demonstration devices
► **Falling slinkies exhibit peculiar physics**
 ► tension collapses from the top down
 ► the bottom remains suspended until the top hits it
 ► a wave must propagate downwards before the bottom falls
► An improved model of the fall is developed *(Cross & Wheatland 2012)*
 ► based on an existing semi-analytic model ... *(Calkin 1993)*
 ► ... modified so the collapse of slinky turns takes a finite time
► The new model is fitted to data from high-speed movies
 ► good qualitative fit to data achieved
 ► values of spring constant checked independently