

Vortex Structures in Complex Plasmas

A.A Samarian School of Physics, University of Sydney

Outlines

Introduction

- The experimental set-up
- Experimental observation of vortices
- Velocity distribution
- Description and implementation of model
- Simulated and experimental results
- Conclusion

Introduction

 Dust vortices provide an opportunity to study large scale vortex structures on a kinetic level

Tornado

Cyclone

Water Vortex

Galaxy

Experimental Observation of Vortices

DC Discharge

IC RF Discharge

Experimental Observation of Vortices

Analysis of Data

Applied Tracking program

Problems with the "Closest Dust" algorithm

Method used

- Frame n
- Frame n + 1

Visualisation of Velocity Map

Velocity distribution

Velocity Distribution

Vertical Cross Section

Vertical Cross Section

Vertical cross section of dust vortex

Vertical Component of Particle Velocity

Model Description

Based on standard 2-D MHD equations:

• Momentum equation:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \bullet \nabla)\mathbf{u} = \frac{-\nabla p}{nm} + \frac{q_{dust}}{m} (\mathbf{E} + \mathbf{u} \times \mathbf{B}) - \upsilon_f \mathbf{u}$$

- Introducing Vorticity: $\boldsymbol{\omega} = \nabla \times \mathbf{u}$
 - Taking the curl of the momentum equation
 - Neglecting B fields and assuming incompressibility

Governing Equations

Vorticity-Streamfunction form:

$$\nabla^2 \psi = -\omega$$

$$\mathbf{u} = \nabla \times (0, 0, \psi)$$

$$\frac{\partial \omega}{\partial t} + (\mathbf{u} \bullet \nabla) \boldsymbol{\omega} = \nabla \times \frac{q_{dust}}{m} \mathbf{E} - \boldsymbol{\upsilon}_f \boldsymbol{\omega}$$

• Form a closed set assuming q and E are known.

Vortex Generation

Source term in vorticity equation:

$$\nabla \times \frac{q}{m} \mathbf{E} = \frac{1}{m} \left(E_y \frac{\partial q}{\partial x} - E_x \frac{\partial q}{\partial y} - q \nabla \times \nabla \phi \right)$$
$$= \frac{1}{m} \left(E_y \frac{\partial q}{\partial x} - E_x \frac{\partial q}{\partial y} \right)$$

Charge gradient required for vortex excitation!

Plasma Model

• E field obtained from Poisson's equation:

$$\varepsilon_0 \nabla \bullet \mathbf{E} = \left(e(n_i - n_e) + q_{dust} n_{dust} + q_{probe} \right)$$

Due to bulk electro-neutrality, approx:

$$\varepsilon_0 \nabla \bullet \mathbf{E} = q_{probe} *$$

 Charge value chosen to approximate experimental potential

Dust Charge

$$q_{dust}(T_e, v_i, n_i, n_e) = -e(\langle Z \rangle + \Delta Z(x, y))$$

• Charge function:

Simulated Vortices

 $vf = 100 (s^{-1}), dQ \sim 2\% < Q >, V = 20V$

* Blue is clockwise rotation

 Angular velocity distribution obtained from a current loop analysis
Current Loop Distribution

$$\Omega = \frac{1}{2} \nabla \times \mathbf{u}$$
$$= \frac{\omega}{2}$$

 $dQ \sim 2\% < Q > V = 20V$

Samarian, A.A, Vaulina, O., Tsang, W., James, B.W (2002). *Formation of Vertical and Horizontal Dust Vortexes in an RF-Discharge Plasma.* Physica Scripta T98

 $vf = 100 (s^{-1})$

dQ ~ 2%<Q>

Conclusions

- The proposed model is capable of modeling vortex structures in complex plasmas
- Vortex generation requires gradient of dust charge
- Vortex characteristics independent of charge magnitude, determined by charge gradient
- Experimental support for the simulated vortices given for:
 - General angular velocity distribution
 - Variation of angular frequency with frictional frequency
 - The dependence of angular frequency on pin electrode potential assuming the dust charge gradient was held constant