
IDL: Interactive Data Language
User Information

Chris Rennie

October 2010

1 Introduction

IDL can be used to generate high-quality graphics, consisting of 2D plots (line plots) or 3D plots (surface plots), as well
as for rendering images. It is roughly comparable to SuperMongo in being an independent application that can be used
interactively or by running scripts. [If you need to create graphics from within your own program you should use the
PGPLOT or NCARGraphics libraries.] IDL is able to take data files, transform the data in almost any way, and then to
generate output either on screen, on paper, or to a file. It is ageneral-purpose programming language with an emphasis
on data presentation.

There is on-line help available from within IDL, however it is not a satisfactory starting point from which to learn
about IDL. Consequently this document aims to provide an overview of the essentials, and leaves detailed explanations
to the manuals and on-line help.

2 Absolute essentials

IDL runs on most hosts in physics, but it might be necessary ordesirable first tossh to some host other than your local
host. Then you can either type

idl

to run IDL through a traditional command line interface, or type

idlde

to run the graphical IDL Development Environment. The latter offers an integrated editor and easy display of variable
values, but the former is better when simply running programs. The choice depends on circumstances.

In both interfaces there is a prompt

IDL>

at which one can type any of the hundreds of operations, declarations and expressions possible under IDL, and any of
the executive commands including

.compile or .com Compile but don’t run script

.go or .g Run previously compiled script

.run or .r Compile and run script

.rnew or .rn Clear memory, compile and run script
? Start online help
exit Exit IDL

Note that detailed on-line help can be obtained by entering ‘?’, at the IDL prompt or by running the programidlhelp
from the shell prompt.

The remainder of this overview section will revolve around the following commands, which can be entered at the
IDL> prompt of either IDL or IDLDE,

IDL> x=findgen(100)
IDL> x=x/50
IDL> y=sin(3 * !Pi * x)/EXP(x)
IDL> PLOT, x, y
IDL> wdelete

1

and which should result in a plot of a damped sine wave.
This simple example serves to demonstrate several general features of IDL. The first line contains a call to the

functionfindgen() , which in this case generates an array of 100 floats that is assigned to the variablex . This useful
function also initializes the array so that its elements arex[0]=0.0 , x[1]=1.0 , x[2]=2.0 , . . . , x[98]=98.0 ,
x[99]=99.0 . Note that data types are dynamic, sox will remain an array of 100 floats until there is a new assignment
that changes the type or dimensionality ofx .

The second line illustrates simple scaling of the arrayx .
The third line contains two other functions,sin() andexp() . The meaning is obvious, although it is notable that

the functions have the arrayx as their argument, and so the resulty will be an array with the same dimensions asx . The
argument tosin() contains the predefined constant!Pi . This is an example of one of several system variables, which
are distinguished user-defined variable by an initial exclamation mark. Note also that IDL is insensitive to case:EXPis
identical toeXP and!Pi is identical to!pi .

The fourth line plots the arrayy as a function ofx . In the terminology of IDL,plot is a procedure. Procedures
have a distinct syntax from that of functions: they have no brackets around the arguments, and generate no return value.
IDL procedures are typically flexible in that often they can be called in alternative ways. For example,

IDL> plot, y

produces a similar plot, except that the abscissa is labelled with default values,0 to 100 in this case. The various
alternative forms for each procedure call are explained in the manual.

Also, procedures and functions usually allow a number ofkeywords. Keywords can appear anywhere after the
procedure or function name. They might be optional parameters, for example

IDL> plot, x, y, thick=2.0

will cause the line to have double the usual thickness; or they can be switches, as in the example

IDL> plot, x, y, /xlog

which results in a log-linear plot. This last example generates a warning on account ofx[0]=0.0 , so this is a good
opportunity to demonstrate how to specify a subscript range. The form

IDL> plot, x[1:99], y[1:99], /xlog

will skip the first element, eliminate the warning, and produce a plot with a more satisfactory scale. There is also
a shorthand way of specifying the entire range of subscriptswithin one dimension, which is useful for example in
extracting rows or columns from a multidimensional arrays:

IDL> plot, y[3, *] ; plot 4th column of a 2D array
IDL> plot, y[* ,9] ; plot 10th row of a 2D array

The fifth line in the example above,wdelete , is a procedure that requires no arguments.

Most data types are available within IDL, including the usual numerical types as well as complex and string data
types and structures. Likewise all the usual operators are available (exponentiation uses ‘ˆ’) plus some unusual ones (‘#’
and ‘##’ for matrix multiplication). Boolean operators follow Fortran nomenclature.

To view the contents of a simple variable or an array, use theprint command, althoughhelp, struct, \struct
is more suitable for structures, e.g.

print, y ; prints contents of variable or array y
help, !d, /struct ; prints system structure !D

3 Scripts and complex statements

All but the most trivial plotting tasks are best handled witha script file. The following example shows a complete IDL
script, and includes comments, continuations and aFORloop.

; Example of FOR loop and array operations. Note also
; the comment (’;’) and continuation (’$’) characters.
set_plot,’x’ ; ’x’ or ’ps’ are common options
TotalPts=40

2

MaxWidth=16
; Create and plot a sequence of random numbers
plot, randomn(seed,TotalPts,/normal), $

title=’Smoothed Normal variate’
for n=4,MaxWidth,4 do begin

Raw=randomn(seed,TotalPts,/normal) ; New sequence
oplot, smooth(Raw,n,/edge_truncate), linestyle=n/4

endfor
end

If the above lines are in a file calledscript1.pro , then to run it type.rnew script1 following the IDL>
prompt. The result will be an X window containing one series of random numbers, overlaid with four increasingly
smoothed series.

The command.rnew is like .run but additionally erases currently accumulated variables,so is preferred. It is also
possible to type.compile script1 and.go if you wish to compile and run separately. Note that if you useIDL’s
conventional file extension.pro for scripts then it is not necessary to specify it when running scripts.

One good reason for using script files is that complex controlstatements are possible. Although control statements
have single line forms, they can appear as in scripts as multiline statements by combining them withbegin andend .
Both single and multiline forms are illustrated in the examples below.

for var=val0,val1[,incr] do begin
statements

end

for col=0,MaxCols-1 do begin
av=total(arr[col, *])/100
arr[col, *]=arr[col, *]/av

end
if expression then begin

statements
end

if f lt Nyquist then f=Nyquist

if expression then begin
statements

end else begin
statements

end

if Inverted then begin
plot, Time, -Efflux

end else begin
plot, Time, Efflux

end
repeat begin

statements
end until expression

repeat begin
Pow=2* Pow

end until (Pow gt val)

while expression do begin
statements

end

while (ans eq ’y’) do begin
print, systime()
read,prompt=’Again?’,ans

end
case expression of

expression: begin
statements
end

expression: begin
statements
end

endcase

case style of
1: plot, y
2: plot, x,y

else: begin
print,’Illegal option’
stop
end

endcase

4 Preparing the data for plotting

The first task of generating a plot is usually reading data files and getting the data into a suitable form. The ideal case
is when you know beforehand the dimensions of the data. For example, if the file consists of three lines of header
information, a ten element integer vector and a ten column by100 row matrix of floats, then it can be read by

openr, lun, ’readings1.dat’, /get_lun
header=strarr(3)
ivals=intarr(10)

3

data=fltarr(10,100)
readf, lun, header,ivals,data
free_lun, lun ; close and free LUN
; plot data...
end

This example introducesopenr andreadf , both of which are very like the corresponding Fortran commands. Like
Fortran, IDL has the concept of logical units for addressingI/O streams. They are addressed using arbitrary integers in
some limited range, but IDL has the ability (illustrated above) of assigning LUNs automatically. There is no need to
choose LUNs explicitly.

It often impossible to allocate array sizes correctly priorto reading the data. In such cases it is necessary to deal with
the possibility of overflow, perhaps as in the following example. It is also usual practice to truncate an oversized array
to eliminate unused elements. The following example shows how easy this is in IDL.

; Read file consisting of four columns of floats
openr, lun, ’readings2.dat’, /get_lun
data=fltarr(4, 200) ; 4 columns, 200 rows
temp=fltarr(4) ; 4 elements
i=0
while (not eof(lun) and (i lt 200)) do begin

readf, lun, temp
data[* ,i]=temp
i=i+1

end
data=data[* ,0:i-1] ; discard unused elements
free_lun, lun ; close and free LUN
end

For subtle reasons to do with the distinction between references and pointers, it is illegal to perform the following
shortcut in the preceding example:

readf, lun, data[0,i], data[1,i], data[2,i], data[3,i]

The rule is thatyou cannot read into a subscripted variable.
The commandreadf is used much of the time as shown above, but also allows formats to be specified explicitly

when necessary. This is useful when there are values to be skipped, or strings which need to be parsed explicitly. Some
examples are

readf, lun, farray, iarray, format=’(3f6.2,30x,10i5)’
readf, lun, str, farray, format=’(a10,3x,4(e10.3,5x))’

Opening a data files for writing is achieved withopenw, and formated writing is carried out withprintf . There
are also commands for reading and writingunformatted data,readu andwriteu , and for reading and writing certain
image formats like GIF, JPEG etc. Unformatted data producedby Fortran programs are catered for by the keyword
f77_unformatted . For more, see under ‘Input/Output Routines’ in the online help.

5 Two dimensional plots

Before plotting it is usually necessary to define the destination for the output, and to specify the size of the plot area.
Once that is done, subsequent plot commands are independentof hardware.

5.1 Output device definition

There are many possible output ‘devices’ in IDL, although the most important ones are an X window, a Postscript page
and an Encapsulated Postscript figure. The following scriptfragments show how each can be set up in such a way as
to result in basically similar output. Note the many small differences depending on the choice of output device. [The
examples below assume that you have set the variablesx_cm andy_cm to the required plot size in cm – although there
are reasonable defaults already set.]

X window:

4

set_plot,’x’
!p.font=-1 ; vector (Hershey) fonts
device, set_character_size=[7,12] ; in pixels
window, /free, xsize=x_cm * !d.x_px_cm, ysize=y_cm * !d.y_px_cm

: ; create plot
wdelete, !d.window ; optionally delete window when done

PostScript file:

set_plot,’ps’
!p.font=0 ; hardware (PostScript) fonts
device, /helvetica, font_size=10, filename=’somename.p s’, $

ENCAPSULATED=0, xsize=x_cm, ysize=y_cm, $
xoffset=(21.0-x_cm)/2, yoffset=(29.7-y_cm)/2

: ; create plot
device, /close_file ; close file - obligatory

Encapsulated PostScript figure:

set_plot,’ps’
!p.font=1 ; TrueType fonts
device, /helvetica, font_size=10, $

filename=’somename.eps’, /ENCAPSULATED, $
xsize=x_cm, ysize=y_cm

: ; create plot
device, /close_file ; close file - obligatory

For the purposes of illustration only, all three legal values for !p.font are demonstrated above. The choice of font
renderer may seem an arcane matter, but can be important if trying to create perspective effects, or consistent appearances
on different output devices. In short: vector fonts can be used in both X windows and Postscript files but are ugly and
idiosyncratic; TrueType fonts can be used in both X windows and Postscript files but are slow and bulky; Postscript fonts
can only be used in PostScript files and can’t be ’skewed’, buthave high resolution and don’t add to the size of the file.

Technical aside: The majority of examples here and in the documentation tacitly assume the use of a PseudoColor (8-bit)
display. Although IDL can be used on TrueColor (24-bit) displays in such a way as to exploit the greater colour depth,
you may initially find it simpler to force 8-bit operation on TrueColor displays by addingdevice, decomposed=0

when defining the X window. Or if TrueColor is important to you, then see the Physics IT support FAQ.

When outputting grayscale or colour to a PostScript file, it is necessary to enable colour maps in the printer, and to state
the resolution with which colours are to be specified to the printer. Include something like

device, /color, bits_per_pixel=8 .

5.2 Plotting

Having managed to read in the data and overcome the complications of output device configuration, it just remains to
plot the data, and that can be as simple as

plot, y

which plots all values in the vectory , with the x-axis labelled 0 1 2. . . . More often however, you will want to supply a
vector of x-values so that the abscissa is more usefully labelled:

plot, x, y

This command by default plots the data points joined by a solid line, and adds axes on all four sides with tick marks
pointing inwards. All this and more can be altered with keywords. The following keywords affect the overall appearance
of the plot, or the way the lines are drawn,

5

BACKGROUNDBackground colour index when erasing.
CHARSIZE Overall character size.
CHARTHICK Overall thickness for vector fonts.
CLIP Coordinates of clipping window.
COLOR Colour index for data, text, line, or polygon fill.
DATA Set to plot in data coordinates.
DEVICE Set to plot in device coordinates.
FONT Text font index:−1 for vector, 0 for hardware, 1 for TrueType

fonts.
LINESTYLE Linestyle used to connect data points.
NOCLIP Set to disable clipping of plot.
NODATA Set to plot only axes, titles, and annotation w/o data.
NOERASE Set to inhibit erasing before new plot.
NORMAL Set to plot in normal coordinates.
POSITION Position of plot window.
PSYM Use plotting symbols to plot data points.
SUBTITLE String for subtitle.
SYMSIZE Size of PSYM plotting symbols.
T3D Set to use 3D transformation stored in!P.T .
THICK Overall line thickness.
TICKLEN Length of tickmarks in normal coordinates.1.0 produces a grid.

Negative values extend outside window.
TITLE String for plot title.
ZVALUE The Z coordinate for a 2D plot in 3D space.

and the following affect the way the axes are drawn,
[XYZ]CHARSIZE Character size for axes.
[XYZ]GRIDSTYLE Index of linestyle to be used for tickmarks and grids.
[XYZ]MARGIN Margin of plot window in character units.
[XYZ]MINOR Number of minor tick marks.
[XYZ]RANGE Axis range.
[XYZ]STYLE Axis type.
[XYZ]THICK Thickness of axis and tickmark lines.
[XYZ]TICKFORMAT Allows advanced formatting of tick labels.
[XYZ]TICKLEN Tickmark lengths for individual axes.
[XYZ]TICKNAME String array of up to 30 labels for tickmark annotation
[XYZ]TICKS Number of major tick intervals for axes.
[XYZ]TICKV Array of up to 30 elements for tick mark values.
[XYZ]TICK_GET Variable in which to return values of tick marks.
[XYZ]TITLE String for specified axis title.

where ‘[XYZ] ’ should be replaced by ‘X’, ‘ Y’, or ‘ Z’. The on-line help explains the use of these options more fully.
These options apply not just toplot , but also to the many other IDL plot commands, including:bar_plot , contour ,
errplot for plotting error bars,plot_field for plotting vector fields,plots for plotting symbols,vel for plotting
streamlines, and many more. See ‘Plotting routines: Two dimensional and general’ under ‘List of routines by application’
in the on-line help.

5.3 Contour plots

Data defined on a rectangular grid are easily plotted usingcontour . For example,

contour, dist(13,16)

generates a contour plot of the 13× 16 array returned by the functiondist . The more general form for calling this
procedure iscontour, z,x,y , which allows the grid to be specifed (which can be unevenly spaced) and even allows
points to randomly distributed in the plane. [But usetrigrid when the points are distributed on a non-flat surface.]
Much customization of contour plots is possible. In addition to the general keywords above, the keywordslevels ,
nlevels , fill andc_labels , which are specific tocontour , are commonly required. See undercontour in
the on-line help for several examples of this routine.

6

5.4 Multiple plots

A useful command to use in conjunction withplot is the commandoplot . It is similar to plot except that it
overplots an existing plot, retaining the same scale. It was demonstrated in Section 3.

Alternatively, if you wish to create several separate plotson the one page, the most convenient way is to set the value
of the system variable!p.multi . For example, to create an array of three plots horizontallyand two vertically, do

!p.multi=[0,3,2]

prior to plotting. Then successive calls toplot will fill the six plot regions from left to right, and top to bottom. [Alter
the first value if you want to start plotting at a different point in the sequence.]

6 Three dimensional plots

Surface plots are an alternative to contour plots: compare the plots produced bycontour, dist(13,16) and
surface, dist(13,16) . However there are usually more complications with surfaceplots, the issues being orien-
tation, perspective, colour and style of shading.

Orientation can be set with the keywordsax andaz which specify a rotation around the X axis that is followed by
one around the Z axis. [Both are in degrees and have default values of 30 degrees.] For more complete control of angles,
perspective, scales and translations try the proceduret3d , which manipulates the general transformation matrix!p.t .

The choice of available colours is most conveniently made bytyping loadct, n, where n=0. . . 40. The result of
this is a colour table (or gray table whenn = 0), which can be viewed withxpalette , and can be used in plots of
all kinds via the colour indices 0. . . 255. The default foreground and background colours are at the extremes of this
range. You can also select a colour map using thexloadct widget, or specify your own colour map withtvlct or
xpalette .

IDL has four styles of shading. In the following examplessurf is a 2-D array specifying the surface andshade is
some other arraywith the same dimensions.

1. The surface is plotted as a wire-mesh with some specific colour.
surface, surf, color=60

2. The surface is plotted as a wire-mesh with the colour at each node specified by an independent 2D array.
surface, surf, shades=bytscl(shade, top=!d.table_size- 1)

3. A continuous surface is rendered, as if illuminated by a point source.
shade_surf, surf

4. A continuous surface is rendered, with the colours provided by an independent array.
shade_surf, surf, shades=bytscl(shade, top=!d.table_si ze-1)

The functionbytscl simple rescales the values inshade[.,.] to be in the range0..!d.table_size-1 , so that
they correspond exactly to the range of available indices. The examples above show the general case wheresurf and
shade are independent 2D array, but acually it is common for them tobe identical: in this case the surface is colour
coded according to height.

If you want to explore fancy effects, try the following:

; Combined plots in 3D
loadct, 3
shade_surf, dist(10), /save
contour, dist(10), /t3d, zvalue=1, /noerase, /noclip

and

; Simple animation
for j=0,19 do begin

wait, 0.2
shade_surf, dist(10), az=18 * j, xstyle=4, ystyle=4, zstyle=4

end

Selecting a suitable colour map is best done with the widget tool xloadct . The widgetxpalette is similar, and
good for fine-tuning colour maps.

7

7 Images

Images are two dimensional arrays of pixels, the only complication is getting the colours right.
In the simplest case you have a JPEG, TIFF etc. file, in which the palette is provided. Then you can use functions

with names likeread_jpeg to read both the image and palette into arrays, load the colour table, and display the image.
For example,

pic=read_tiff(’my.tiff’,r,g,b)
tvlct, r,g,b
tv, pic

There are similar functions with names likewrite_tiff for writing images to files. Such cases are too simple to
consider further.

More challenging is the case where you have an 2-D array that you want to represent as an image. We assume each
pixel is represented by a single number. By scaling, offsetsand clipping these raw values will have to be reduced to an
array ofbytes, each of which is in the range0..!d.table_size-1 . Only after an image has been transformed into
a suitably-scaled byte array can it be plotted using the commandTV.

Actually there is a variant commandTVSCL that scales integer or float data to the required range, although it is
generally better to manipulate the raw image explicitly, asin the following example. If you want to image pixel values
in the range 20..750, and to use the full range of available colours, then

NormalData=bytscl(RawData,min=20, max=750, top=!d.tab le_size-1)
TV, NormalData

Those with TrueColor (24-bit) displays do not have to botherwith scaling of course: if the pixels are read in as RGB
triplets then TV can display the images directly. You just need to setTV’s keywordtrue to 1, 2 or 3 to tell it whether
the values in the array are ordered3 × m × n, m × 3 × n or m × n × 3.

Those with PseudoColor (8-bit) displays will have to selector create a colour map prior to callingTV. This is done
with loadct , xloadct , tvlct or xpalette . [This topic was touched upon in Section 6.]

When displaying images, the point (0,0) of an image will appear at the lower-left corner. If the window is big
enough to display several images, then successive calls toTV will result in images being placed from left to right and
top to bottom. The alternative to automatic placement is explicit placement. In the example below, a colour bar is placed
to the left of a 256 x 256 image.

window, xsize=356, ysize=256
for i=0,19 do begin

colour=(!d.table_size/20) * i
tv, replicate(colour,30,10), 30, 10 * i+30

end
tv, NormalData, 100,0

Image processing is one of IDL’s strengths. See the list of functions in ‘Array and Image Processing Routines’ under
‘Routines by Application’ in the on-line help. There are function for resizing, filters, transformations and much more.

8 Environment variables

There are two environment variables that are specific to IDL and occasionally useful.

8.1 IDL PATH

The environment variableIDL PATHis used to add one of your own directories to IDL’s list of places that it searches
for .pro files. If you don’t define this variable then IDL looks by default only in IDL DIR/lib . So if you have
frequently-used scripts in (say)˜ /idl then try modifying your shell initialization scripts:

#If you use C Shell, then add the following to .cshrc or .tcshr c
setenv IDL_PATH ˜/idl:$IDL_DIR/lib

#If you use BASH, then add the following to .bashrc
export IDL_PATH=˜/idl:$IDL_DIR/lib

8

8.2 IDL STARTUP

Another environment variable trick is that you can set the environment variableIDL STARTUPto equal the name of
some IDL script file, and that file will be run whenever IDL is started.

This is useful in many cases. One case is if you want convenient access (whatever your current directory may be) to
a set of IDL scripts located in a particular directory. One way to do this is to useIDL PATHas described above; another
is to modify your!path variable from within IDL

if strpos(!path,’˜/idl:’) eq -1 then !path=’˜/idl:’ + !pat h
A third way is to copy this line into some file and point the environment variableIDL STARTUPto this file. So if the
file is ˜/idl/idl_startup.pro then add either of the lines below:

#If you use C Shell, then add the following to .cshrc or .tcshr c
setenv IDL_STARTUP ˜/idl/idl_startup.pro

#If you use BASH, then add the following to .bashrc
export IDL_STARTUP=˜/idl/idl_startup.pro

Of course, any number of additional commands can be placed inthe startup script, so this method has wider utility.

9 Finally

This introduction has focussed on graphics and imaging, butIDL is a broad general programming language. Topics
not covered include using IDL for curve fitting and optimization, user-defined functions and procedures, object oriented
programming, and calling C routines from IDL. There also tools (‘widgets’) for developing your own graphical user
interfaces, and numerous widget-based programs supplied:a particularly useful one is the graphical file selection routine,

InputFilename=dialog_pickfile(path=’.’, filter=’ * .dat’)

and the previously-mentioned utilitiesxloadct andxpalette .
IDL programming will be even more enjoyable if syntax highlighting is used. This is built-in to IDLDE, but if you

prefer to use your favourite editor, it requires you to install an add-on. Emacs users should go to
http://idlwave.org ,

while nedit users can find an IDL pattern file atwww.nedit.org .
If you are interested in getting the most out of IDL, there isidldemo and there are examples in subdirectories

lib andexamples of /usr/physics/rsi/idl/ . The bookIDL Programming Techniques is available from the
library on Level 4 of the Annexe, as are the IDL manuals.

9

