IDL: Interactive Data Language
User Information

Chris Rennie

October 2010

1 Introduction

IDL can be used to generate high-quality graphics, comgjgif 2D plots (line plots) or 3D plots (surface plots), aslwel
as for rendering images. It is roughly comparable to Sup@dddn being an independent application that can be used
interactively or by running scripts. [If you need to creataghics from within your own program you should use the
PGPLOT or NCARGraphics libraries.] IDL is able to take dalesfj transform the data in almost any way, and then to
generate output either on screen, on paper, or to a file. Iyenaral-purpose programming language with an emphasis
on data presentation.

There is on-line help available from within IDL, howeverstmot a satisfactory starting point from which to learn
about IDL. Consequently this document aims to provide amwee of the essentials, and leaves detailed explanations
to the manuals and on-line help.

2 Absolute essentials
IDL runs on most hosts in physics, but it might be necessadesirable first tesh to some host other than your local
host. Then you can either type
[o]
to run IDL through a traditional command line interface, ype
idlde

to run the graphical IDL Development Environment. The lattifers an integrated editor and easy display of variable
values, but the former is better when simply running prografe choice depends on circumstances.
In both interfaces there is a prompt

IDL>

at which one can type any of the hundreds of operations, @dgidas and expressions possible under IDL, and any of
the executive commands including

.compile or.com Compile but don’t run script

.go or.g Run previously compiled script

.run or.r Compile and run script

.rnew or.r Clear memory, compile and run script
? Start online help

exit Exit IDL

Note that detailed on-line help can be obtained by enteffygt the IDL prompt or by running the prograiaihelp
from the shell prompt.

The remainder of this overview section will revolve arouhd following commands, which can be entered at the
IDL> prompt of either IDL or IDLDE,

IDL> x=findgen(100)

IDL> x=x/50

IDL> y=sin(3 *IPi *X)/[EXP(X)
IDL> PLOT, x, y

IDL> wdelete

and which should result in a plot of a damped sine wave.

This simple example serves to demonstrate several gereaairés of IDL. The first line contains a call to the
functionfindgen() , which in this case generates an array of 100 floats thatigreesbto the variabl&. This useful
function also initializes the array so that its elementsxd@=0.0 , x[1]=1.0 , x[2]=2.0 ,...,x[98]=98.0 ,
X[99]=99.0 . Note that data types are dynamicyswill remain an array of 100 floats until there is a new assignime
that changes the type or dimensionalityxof

The second line illustrates simple scaling of the axay

The third line contains two other functiorsn() andexp() . The meaning is obvious, although it is notable that
the functions have the arrayas their argument, and so the regultill be an array with the same dimensionsasrhe
argumenttein() contains the predefined constéRt . This is an example of one of several system variables, which
are distinguished user-defined variable by an initial exelédon mark. Note also that IDL is insensitive to caB&Pis
identical toeXP and!Pi is identical tolpi

The fourth line plots the array as a function ok. In the terminology of IDL plot is aprocedure. Procedures
have a distinct syntax from that of functions: they have raxkets around the arguments, and generate no return value.
IDL procedures are typically flexible in that often they candalled in alternative ways. For example,

IDL> plot, y

produces a similar plot, except that the abscissa is labe&lith default valuesp to 100 in this case. The various
alternative forms for each procedure call are explainedémanual.

Also, procedures and functions usually allow a numbekeytvords. Keywords can appear anywhere after the
procedure or function name. They might be optional pararagier example

IDL> plot, x, vy, thick=2.0
will cause the line to have double the usual thickness; or @ be switches, as in the example
IDL> plot, x, y, /xlog

which results in a log-linear plot. This last example getesa warning on account &f0]=0.0 , so this is a good
opportunity to demonstrate how to specify a subscript raiige form

IDL> plot, x[1:99], y[1:99], /xlog

will skip the first element, eliminate the warning, and proéwa plot with a more satisfactory scale. There is also
a shorthand way of specifying the entire range of subscrifiisin one dimension, which is useful for example in
extracting rows or columns from a multidimensional arrays:

IDL> plot, y[3, *] ; plot 4th column of a 2D array
IDL> plot, y[*,9] ; plot 10th row of a 2D array

The fifth line in the example aboveidelete , is a procedure that requires no arguments.

Most data types are available within IDL, including the usuamerical types as well as complex and string data
types and structures. Likewise all the usual operators\aitahle (exponentiation uses) plus some unusual ones (‘#
and ‘##' for matrix multiplication). Boolean operatorslifml Fortran nomenclature.

To view the contents of a simple variable or an array, us@tht command, althoughelp, struct, \struct
is more suitable for structures, e.g.

print, y ; prints contents of variable or array y
help, !d, /struct ; prints system structure !D

3 Scripts and complex statements

All but the most trivial plotting tasks are best handled wvatkcript file. The following example shows a complete IDL
script, and includes comments, continuations aR@©O&Iloop.

; Example of FOR loop and array operations. Note also
; the comment (;') and continuation ('$’) characters.
set_plot,’x’ ; 'X' or 'ps’ are common options
TotalPts=40

MaxWidth=16
; Create and plot a sequence of random numbers
plot, randomn(seed,TotalPts,/normal), $
titte="Smoothed Normal variate
for n=4,MaxWidth,4 do begin
Raw=randomn(seed,TotalPts,/normal) ; New sequence
oplot, smooth(Raw,n,/edge_truncate), linestyle=n/4
endfor
end

If the above lines are in a file callestriptl.pro , then to run it typernew scriptl following the IDL>
prompt. The result will be an X window containing one seri€samdom numbers, overlaid with four increasingly
smoothed series.

The commandrnew s like .run but additionally erases currently accumulated varialsless preferred. It is also
possible to typecompile scriptl and.go if you wish to compile and run separately. Note that if you IBEs
conventional file extensiomro for scripts then it is not necessary to specify it when rugrsaripts.

One good reason for using script files is that complex costaitements are possible. Although control statements
have single line forms, they can appear as in scripts aslmalstatements by combining them witlegin andend.

Both single and multiline forms are illustrated in the exdesbelow.

for var=valO,vall,incr] do begin for col=0,MaxCols-1 do begin
statements av=total(arr[col, *1)/100
end arrfcol, *]=arr[col, *]/av
end
if expressionthen begin if f It Nyquist then f=Nyquist
statements
end
if expressionthen begin if Inverted then begin
statements plot, Time, -Efflux
end else begin end else begin
statements plot, Time, Efflux
end end
repeat begin repeat begin
statements Pow=2+ Pow

end until expression

end until (Pow gt val)

while expressiondo begin
statements
end

while (ans eq 'y’) do begin
print, systime()
read,prompt="Again?’,ans
end

case expression of

case style of

expression: begin 1: plot, y
statements 2: plot, xy
end else: begin
expression: begin print,’lllegal option’
statements stop
end end
endcase endcase

4 Preparing the data for plotting

The first task of generating a plot is usually reading data filed getting the data into a suitable form. The ideal case
is when you know beforehand the dimensions of the data. Fampie, if the file consists of three lines of header
information, a ten element integer vector and a ten columbd®yrow matrix of floats, then it can be read by

openr, lun, 'readingsl.dat’, /get_lun
header=strarr(3)
ivals=intarr(10)

data=fltarr(10,100)
readf, lun, header,ivals,data

free_lun, lun ; close and free LUN
; plot data...
end

This example introducespenr andreadf , both of which are very like the corresponding Fortran comdsa Like
Fortran, IDL has the concept of logical units for addressifigstreams. They are addressed using arbitrary integers in
some limited range, but IDL has the ability (illustrated abpof assigning LUNs automatically. There is no need to
choose LUNSs explicitly.

It often impossible to allocate array sizes correctly ptioreading the data. In such cases it is necessary to deal with
the possibility of overflow, perhaps as in the following exden It is also usual practice to truncate an oversized array
to eliminate unused elements. The following example shawséasy this is in IDL.

; Read file consisting of four columns of floats
openr, lun, 'readings2.dat’, /get_lun

data=fltarr(4, 200) ; 4 columns, 200 rows
temp=fltarr(4) ; 4 elements
i=0

while (not eof(lun) and (i It 200)) do begin
readf, lun, temp
data[=*,i]=temp

i=i+1
end
data=data] *,0:i-1] ; discard unused elements
free_lun, lun ; close and free LUN
end

For subtle reasons to do with the distinction between rafee and pointers, it is illegal to perform the following
shortcut in the preceding example:

readf, lun, data[0,i], data[l,i], data[2,i], data[3,i]

The rule is thayou cannot read into a subscripted variable

The commandeadf is used much of the time as shown above, but also allows fertodie specified explicitly
when necessary. This is useful when there are values to ppeskior strings which need to be parsed explicitly. Some
examples are

readf, lun, farray, iarray, format='(3f6.2,30x,10i5)’
readf, lun, str, farray, format='(a10,3x,4(e10.3,5x))’

Opening a data files for writing is achieved witpenw, and formated writing is carried out wittrintf . There
are also commands for reading and writimgor matted data,readu andwriteu , and for reading and writing certain
image formats like GIF, JPEG etc. Unformatted data produmeBortran programs are catered for by the keyword
f77_unformatted . For more, see under ‘Input/Output Routines’ in the onliefph

5 Two dimensional plots

Before plotting it is usually necessary to define the destindor the output, and to specify the size of the plot area.
Once that is done, subsequent plot commands are indepesfdertiware.

5.1 Output device definition

There are many possible output ‘devices’ in IDL, althoughtiost important ones are an X window, a Postscript page
and an Encapsulated Postscript figure. The following sérggtments show how each can be set up in such a way as
to result in basically similar output. Note the many smaffedences depending on the choice of output device. [The
examples below assume that you have set the variablea andy_cm to the required plot size in cm — although there
are reasonable defaults already set.]

X window:

set_plot,’x’

Ip.font=-1 ; vector (Hershey) fonts

device, set character_size=[7,12] ; in pixels

window, /free, xsize=x_cm *1d.X_px_cm, ysize=y cm *1d.y_px_cm
: ; create plot

wdelete, !d.window ; optionally delete window when done

PostScript file:

set_plot,’ps’
Ip.font=0 ; hardware (PostScript) fonts
device, /helvetica, font_size=10, filename=somename.p s, $

ENCAPSULATED=0, xsize=x_cm, ysizezy cm, $
xoffset=(21.0-x_cm)/2, yoffset=(29.7-y_cm)/2
: ; create plot
device, /close file ; close file - obligatory

Encapsulated PostScript figure:

set_plot,’ps’
Ip.font=1 ; TrueType fonts
device, /helvetica, font _size=10, $
filename="somename.eps’, /ENCAPSULATED, $
Xsize=x_cm, ysize=y cm
: ; create plot
device, /close file ; close file - obligatory

For the purposes of illustration only, all three legal valfmr!p.font are demonstrated above. The choice of font
renderer may seem an arcane matter, but can be importayin to create perspective effects, or consistent appeasan
on different output devices. In short: vector fonts can bedua both X windows and Postscript files but are ugly and
idiosyncratic; TrueType fonts can be used in both X windomd Rostscript files but are slow and bulky; Postscript fonts
can only be used in PostScript files and can’t be 'skewed’hbug high resolution and don’t add to the size of the file.

Technical aside: The majority of examples here and in thementation tacitly assume the use of a PseudoColor (8-bit)
display. Although IDL can be used on TrueColor (24-bit) thys in such a way as to exploit the greater colour depth,
you may initially find it simpler to force 8-bit operation omueColor displays by addingevice, decomposed=0

when defining the X window. Or if TrueColor is important to yaben see the Physics IT support FAQ.

When outputting grayscale or colour to a PostScript files itécessary to enable colour maps in the printer, and to state
the resolution with which colours are to be specified to tlieter. Include something like
device, /color, bits_per_pixel=8

5.2 Plotting

Having managed to read in the data and overcome the coniplisaif output device configuration, it just remains to
plot the data, and that can be as simple as

plot, y

which plots all values in the vectgr, with the x-axis labelled 0 1 2.... More often however, yoll want to supply a
vector of x-values so that the abscissa is more usefullyidie

plot, X, y

This command by default plots the data points joined by aldole, and adds axes on all four sides with tick marks
pointing inwards. All this and more can be altered with keyd#o The following keywords affect the overall appearance
of the plot, or the way the lines are drawn,

BACKGROUNDBackground colour index when erasing.

CHARSIZE Overall character size.

CHARTHICK Overall thickness for vector fonts.

CLIP Coordinates of clipping window.

COLOR Colour index for data, text, line, or polygon fill.

DATA Set to plot in data coordinates.

DEVICE Set to plot in device coordinates.

FONT Text font index: —1 for vector, 0 for hardware, 1 for TrueType
fonts.

LINESTYLE Linestyle used to connect data points.

NOCLIP Set to disable clipping of plot.

NODATA Set to plot only axes, titles, and annotation w/o data.

NOERASE Set to inhibit erasing before new plot.

NORMAL Set to plot in normal coordinates.

POSITION Position of plot window.

PSYM Use plotting symbols to plot data points.

SUBTITLE String for subtitle.

SYMSIZE Size of PSYM plotting symbols.

T3D Set to use 3D transformation storedinT .

THICK Overall line thickness.

TICKLEN Length of tickmarks in normal coordinateis0 produces a grid.
Negative values extend outside window.

TITLE String for plot title.

ZVALUE The Z coordinate for a 2D plot in 3D space.

and the following affect the way the axes are drawn,
[XYZ]CHARSIZE Character size for axes.
[XYZ]GRIDSTYLE Index of linestyle to be used for tickmarks and grids.
[XYZ]MARGIN Margin of plot window in character units.

[XYZ]MINOR Number of minor tick marks.

[XYZ]JRANGE Axis range.

[XYZ]STYLE Axis type.

[XYZ]THICK Thickness of axis and tickmark lines.
[XYZ]TICKFORMAT Allows advanced formatting of tick labels.
[XYZ]TICKLEN Tickmark lengths for individual axes.
[XYZ]TICKNAME String array of up to 30 labels for tickmark annotation
[XYZ]TICKS Number of major tick intervals for axes.
[XYZ]TICKV Array of up to 30 elements for tick mark values.
[XYZ]TICK_GET Variable in which to return values of tick marks.
[XYZ]TITLE String for specified axis title.

where [XYZ] ’ should be replaced byX, ‘' Y’, or *Z’. The on-line help explains the use of these options morg.ful
These options apply not justpdot , but also to the many other IDL plot commands, includibgr_plot , contour
errplot for plotting error barsplot_field for plotting vector fieldsplots for plotting symbolsyel for plotting
streamlines, and many more. See ‘Plotting routines: Twadsional and general’ under ‘List of routines by applicatio
in the on-line help.

5.3 Contour plots

Data defined on a rectangular grid are easily plotted usimgour . For example,

contour, dist(13,16)

generates a contour plot of the ¥316 array returned by the functiatist . The more general form for calling this
procedure i€ontour, z,X,y , which allows the grid to be specifed (which can be unevepficed) and even allows
points to randomly distributed in the plane. [But usgrid when the points are distributed on a non-flat surface.]
Much customization of contour plots is possible. In additio the general keywords above, the keywdmlels
nlevels ,fill andc_labels , which are specific teontour , are commonly required. See unaemtour in

the on-line help for several examples of this routine.

5.4 Multiple plots

A useful command to use in conjunction wighot is the commanadplot . It is similar toplot except that it
overplots an existing plot, retaining the same scale. It was destnated in Section 3.

Alternatively, if you wish to create several separate pbotshe one page, the most convenient way is to set the value
of the system variablp.multi . For example, to create an array of three plots horizongadtytwo vertically, do

Ip.multi=[0,3,2]

prior to plotting. Then successive callsptmt will fill the six plot regions from left to right, and top to bimim. [Alter
the first value if you want to start plotting at a differentpidin the sequence.]

6 Three dimensional plots

Surface plots are an alternative to contour plots: compaeptots produced bgontour, dist(13,16) and
surface, dist(13,16) . However there are usually more complications with surfdots, the issues being orien-
tation, perspective, colour and style of shading.

Orientation can be set with the keyworals andaz which specify a rotation around the X axis that is followed by
one around the Z axis. [Both are in degrees and have defduéivaf 30 degrees.] For more complete control of angles,
perspective, scales and translations try the proce@dre which manipulates the general transformation magrik

The choice of available colours is most conveniently madéyping loadct, n, where n=0...40. The result of
this is a colour table (or gray table when= 0), which can be viewed witikpalette , and can be used in plots of
all kinds via the colour indices 0...255. The default foregrd and background colours are at the extremes of this
range. You can also select a colour map usingdbadct widget, or specify your own colour map witklct or
xpalette

IDL has four styles of shading. In the following exampsesf is a 2-D array specifying the surface astthde is
some other arrawith the same dimensions

1. The surface is plotted as a wire-mesh with some specifaucol
surface, surf, color=60

2. The surface is plotted as a wire-mesh with the colour &t eade specified by an independent 2D array.
surface, surf, shades=bytscl(shade, top=!d.table_size- 1)

3. Acontinuous surface is rendered, as if illuminated by iatsource.
shade_surf, surf

4. A continuous surface is rendered, with the colours predioly an independent array.
shade_surf, surf, shades=bytscl(shade, top=!d.table_si ze-1)

The functiorbytscl simple rescales the valuesshade.,.] to be in the rang®..!d.table_size-1 , So that
they correspond exactly to the range of available indicése dxamples above show the general case whefe and
shade are independent 2D array, but acually it is common for theimetadentical: in this case the surface is colour
coded according to height.

If you want to explore fancy effects, try the following:

; Combined plots in 3D

loadct, 3

shade_surf, dist(10), /save

contour, dist(10), /t3d, zvalue=1, /noerase, /noclip

and

; Simple animation
for j=0,19 do begin

wait, 0.2

shade_surf, dist(10), az=18 *j, xstyle=4, ystyle=4, zstyle=4
end

Selecting a suitable colour map is best done with the widg#tdoadct . The widgetxpalette is similar, and
good for fine-tuning colour maps.

7 Images

Images are two dimensional arrays of pixels, the only corafibn is getting the colours right.

In the simplest case you have a JPEG, TIFF etc. file, in whielptiette is provided. Then you can use functions
with names likaead_jpeg toread both the image and palette into arrays, load the ctdbie, and display the image.
For example,

pic=read_tiff('my.tiff',r,g,b)
tvict, r,g,b
tv, pic

There are similar functions with names likeite _tiff for writing images to files. Such cases are too simple to
consider further.

More challenging is the case where you have an 2-D array thatwant to represent as an image. We assume each
pixel is represented by a single number. By scaling, offaetsclipping these raw values will have to be reduced to an
array ofbytes each of which is in the rand®.!d.table_size-1 . Only after an image has been transformed into
a suitably-scaled byte array can it be plotted using the canafV.

Actually there is a variant commariVSCL that scales integer or float data to the required range, wdthdt is
generally better to manipulate the raw image explicitlyinathe following example. If you want to image pixel values
in the range 20..750, and to use the full range of availadeues, then

NormalData=bytscl(RawData,min=20, max=750, top=!d.tab le_size-1)
TV, NormalData

Those with TrueColor (24-bit) displays do not have to bothith scaling of course: if the pixels are read in as RGB
triplets then TV can display the images directly. You justdiéo seffV's keywordtrue to 1, 2 or 3 to tell it whether
the values in the array are orderge m x n,m x 3 x norm x n x 3.

Those with PseudoColor (8-bit) displays will have to setaatreate a colour map prior to calliigy. This is done
with loadct , xloadct ,tvict orxpalette . [This topic was touched upon in Section 6.]

When displaying images, the point (0,0) of an image will appat the lower-left corner. If the window is big
enough to display several images, then successive call¥ taill result in images being placed from left to right and
top to bottom. The alternative to automatic placement isieikplacement. In the example below, a colour bar is placed
to the left of a 256 x 256 image.

window, xsize=356, ysize=256
for i=0,19 do begin
colour=(!d.table_size/20) *j
tv, replicate(colour,30,10), 30, 10 *+30
end
tv, NormalData, 100,0

Image processing is one of IDL's strengths. See the listiétions in ‘Array and Image Processing Routines’ under
‘Routines by Application’ in the on-line help. There are €tion for resizing, filters, transformations and much more.

8 Environment variables

There are two environment variables that are specific to IDd @ccasionally useful.

8.1 IDL_PATH

The environment variabl®DL _PATHis used to add one of your own directories to IDL's list of @achat it searches
for .pro files. If you don't define this variable then IDL looks by delfaonly in IDL _DIR/lib . So if you have
frequently-used scripts in (sayjidl then try modifying your shell initialization scripts:

#If you use C Shell, then add the following to .cshrc or .tcshr c
setenv IDL_PATH 7/idl:$IDL_DIR/lib

#If you use BASH, then add the following to .bashrc
export IDL_PATH="idl:$IDL_DIR/lib

8.2 IDL_STARTUP

Another environment variable trick is that you can set theérenment variabldDL _STARTUPto equal the name of
some IDL script file, and that file will be run whenever IDL isuiged.

This is useful in many cases. One case is if you want convea@ess (whatever your current directory may be) to
a set of IDL scripts located in a particular directory. Ong/wado this is to uséDL _PATHas described above; another
is to modify your!path variable from within IDL

if strpos(!path,”/idl:’) eq -1 then !path="7idl:" + !Ipat h
A third way is to copy this line into some file and point the enoviment variabléDL _STARTURGo this file. So if the
file is “/idl/idl_startup.pro then add either of the lines below:
#If you use C Shell, then add the following to .cshrc or .tcshr c

setenv IDL_STARTUP 7/idl/idl_startup.pro
#If you use BASH, then add the following to .bashrc
export IDL_STARTUP="idl/idl_startup.pro

Of course, any number of additional commands can be placimbistartup script, so this method has wider utility.

9 Finally

This introduction has focussed on graphics and imaging)butis a broad general programming language. Topics
not covered include using IDL for curve fitting and optimipat, user-defined functions and procedures, object oriente
programming, and calling C routines from IDL. There alsolsdbwidgets’) for developing your own graphical user
interfaces, and numerous widget-based programs supgligatticularly useful one is the graphical file selectiortirce)

InputFilename=dialog_pickfile(path=".", filter=’ * . dat’)

and the previously-mentioned utilitiefoadct andxpalette

IDL programming will be even more enjoyable if syntax higfifing is used. This is built-in to IDLDE, but if you
prefer to use your favourite editor, it requires you to ilsta add-on. Emacs users should go to

http://idiwave.org ,

while nedit users can find an IDL pattern filevatvw.nedit.org

If you are interested in getting the most out of IDL, therédislemo and there are examples in subdirectories
lib andexamples of /usr/physics/rsi/idl/ . The bookiDL Programming Techniques is available from the
library on Level 4 of the Annexe, as are the IDL manuals.

