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information or quantum computational are front and 
center
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Quantum Computational 
Matter?

A focus on systems, states, models, phases where 
space-time locality is an important limiting constraint

Systems, states, models, phases where quantum 
information or quantum computational are front and 
center

WE ARE PHYSICISTS, but for materials yet to be 
engineered?

WE AREN’T SCARED BY INFORMATION?



Self-Correcting System

Physics of the device enacts 
quantum error correction 
and allows fault-tolerant 
quantum computing?



One Code, Two Models

2D1D

Ising model:

Redundancy code:



Memory

2D
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Fault-Tolerance
2D
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Resilience to “gate” of flipping spins: self-correcting



Self-Correcting 
Quantum Systems?

excitations = strings

Sc = Z⊗6

Sl = X⊗6

cube operators

link operators

qubits on 
plaquettes

4D toric code is self-correcting



Bravyi-Terhal Bounds

For k-local D dimensional stabilizer codes (subspace 
and subsystem) on an {1,..,L}D lattice, the distance of the 
code is bound by

D bound best known
1 c c, many
2 cL toric, color codes, d=cL
3 cL2 3D toric, color codes, d=cL
4 cL3 4D toric, color code, d=cL2

[Bravyi-Terhal arXiv:0810.1983]

http://arxiv.org/abs/0810.1983
http://arxiv.org/abs/0810.1983


Without Spatial Locality
Classical

distance = n

Quantum

distance = n/2

redundancy code
(works with bits)

polynomial code
(uses qudits)



Looking For?
Competition between most likely errors and cost of 
these errors (energy versus entropy)

Codes with local check operators.....



Turn Time to Space?

We know how to perform quantum error correction, 
locally in space-time.  Can we leverage this to design
codes that are local in space?

Time

Space

Space



Stabilizer Subsystem Codes

[n,k,d] subspace code

n physical qubits

k encoded qubits

[Poulin, arXiv:quant-ph/0508131]

http://arxiv.org/abs/quant-ph/0508131
http://arxiv.org/abs/quant-ph/0508131


Stabilizer Subsystem Codes

[n,k,d] subspace code

[n,r,k,d] subsystem code

n physical qubits

k encoded qubits
n physical qubits

k encoded 
qubits

k gauge 
qubits

[Poulin, arXiv:quant-ph/0508131]

http://arxiv.org/abs/quant-ph/0508131
http://arxiv.org/abs/quant-ph/0508131


Baloney Sandwich Example
Gauge

Stabilizer



Baloney Sandwich Example

Measure large stabilizer using only 2-qubit measurements

Gauge

Stabilizer



One Way QC
[Raussendorf and Briegel, Phys. Rev. Lett. 86, 5188 (2001)] 
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One Way QC
[Raussendorf and Briegel, Phys. Rev. Lett. 86, 5188 (2001)] 
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Adaptively measure to enact circuit
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One Way QC
[Raussendorf and Briegel, Phys. Rev. Lett. 86, 5188 (2001)] 

X X X YX±Θ Y Y Y Y

X Y Y XY X Y X X

Y

|0� Rθ • �����
|0� H

�������� �����

Adaptively measure to enact circuit

Z

Z

Initial state described locally + measurements are all local



There’s a Code in My Wire

Sn−1 = [Z]n−1[X]n

Vertex operators at v:

Consider stabilizer code with stabilizer generators all
vertices in a line except first one:

n-1 independent stabilizers = one encoded qubit
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There’s a Code in My Wire

Modulo gauge, 
information can be 

localized here

MBQC from a coding perspective

[n,1,r,1] subsystem code

r
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Modulo gauge, 
information can be 

localized here

MBQC from a coding perspective
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Dave WTH Are You Doing?
Take: set of n-qubit Pauli operators
These: generate a group
This: group = r qubit Pauli group + abelian group
Elements: gauge operators and stabilizer operators

Left over: Pauli operators that commute with the group,
but not in the group generate logical 



Main Idea (WAKE UP)
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ing the results in the last section, we can see that when
we apply our above subsystem code construction to a
syndrome measuring circuit this circuit will end up with
stabilizers related to stabilizers of the code we are mea-
suring. In particular we can consider circuits in which
one prepares ancilla qubits in initialized computational
basis state |0�, and then uses these ancillas to store the
result of the syndrome measurement as in the circuit di-
agram below:

U1 U2

· · ·

Un−k

· · ·

· · ·

...
...

...
· · ·

|0� �������� �����
|0� �������� �����

|0� �������� �����
where the Ui with the conditional X gates are themselves
complex circuits. Then for these types of circuits it is
easy to derive the gauge, logical, and stabilizer groups us-
ing our theorem from the previous section. The stabilizer
group in particular will have two kinds of generators. The
first of these is are the stabilizers that are being measured
times a pattern of X errors on the non-output qubits,
including an X on the ancilla qubit that is being mea-
sured. The second kind of stabilizer corresponds to the
measurement of X on the ancilla being measured along
with a patter of X error on the non-output qubits. Thus
a product of these and gauge group operators gives the
stabilizer on the code block, along with the stabilizer cor-
responding to the measurement results for the ancillas.
Similarly one can calculate that the logical qubits will be
the logical operators for the code on the output qubits,
along with a pattern of X operators on the qubits prior
to these output qubits. Thus it is easy to see, using the
prior sections results and how the syndrome measuring
circuits propagate syndromes and change upon measur-
ing the ancillas that the code we have obtained is related
to our original code.

But now we note that not all circuits for measurement
of syndromes will result in interesting codes. In partic-
ular in order to guarantee that the distance of our sub-
system code is at least the distance of the original code
we are considering, we must insure that the measurement
circuit we use does not destroy the properties of the code
during the syndrome measurement process.

Consider, for an example of where this problem comes
from, the following implementation of a swap gate be-
tween two qubits where we have labeled qubits in the

gadget:��������I1
��������1 ��������2 ��������3 ��������O1

��������I2
��������4 ��������5 ��������6 ��������O2

(29)

If this swap gate was used on the code block qubits, we
will show that it can result in a reduction of the distance
of the code. In particular, consider the two qubit oper-
ator at the output of this gadget, [X]3[Z]O1 [Z]6 where
we use [P ]i to denote Pauli operator P on qubit i. If we
multiply this by the vertex operator on 3 this becomes
[Z]2. Thus a two qubit output operator, in the middle
of the gadget is now a weight 1 operator. If we propa-
gate it back further it will eventually be a > 1 weight
operator, but in thinking about the distance of the code
we are producing, such weight changing operators can
reduce the distance of the code. Thus we must design
our circuits carefully to get around this problem.
Let us now turn to the circuits we will use to measure

the syndromes. We will begin with circuits that invoke a
degree of parallelism that yields constructed graphs that
have valences that are not constant, but that will preserve
the weight of the code nicely. We will then show how
not to stretch out this parallelism as it will run into the
problem we have identified above. We the will show how
to fix this problem, and in particular show how one can
use expander graphs [50] for a very efficient way to make
this fix.
Consider first the following circuit for measuring the

operator Z⊗4:

H H •

H H •

H H •

H H •

|0� H • • • • ����X

(30)

We can “parallelize” the phase gates in this construction,
which results in a circuit that looks like

H H •

H H •

H H •

H H •

|0� H • ����X

(31)

where the CZ gates are not nearest neighbor, but be-
tween the last qubits and the first four qubits. When we

Circuit for measuring 
syndrome of a [n,k,d]  

stabilizer code
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gineering of the dictionary):����������������X ��������X ��������X ��������X ������������������������X ��������X ��������X ��������X ������������������������X ��������X ��������X ��������X ������������������������X ��������X ��������X ��������X ����������������X ��������X ��������X��������X ��������X

���� ��������X ��������X

��
��
��������X ��������X

���� ��������X

��
����������X

���� ��������X ��������X

��
��
��������X ��������X

���� ��������X ��������X

��
��

��������X ��������X��������X ��������X ��������X

(39)
Given the above constructions we can now describe

how to construct a subsystem code from a stabilizer code.
The basic idea is simply to use measurement syndromes
like the one we have just described to measure the stabi-
lizer of the code, strung together in order to obtain a full
measurement of the stabilizer code. Knowing the corre-
sponding circuit we can easily see that the stabilizer of
our constructed code will consist of the stabilizers that
are measured along with a pattern of X operators on the
qubits not at the output of the constructed graph. The
logical operators will behave similarly. Without thinking
about spatial locality for the moment the key important
insight at this point is the gadgets we use will have con-
stant valence for the graphs constructed. Now why does
this construction yield logical operators that are the same
distance as the original code? The way to see this is to
think about how one could use gauge qubits to modify
the logic operators. These correspond to evolving differ-
ent parts of the circuit run backwards. Since our gadget
for measuring does not destroy the weight of the oper-
ators we are measuring as this propagates through the
measurement, these measurements cannot decrease the
weight of the logic elements. Further “holes” in the evo-
lution cannot increase the weight (they only increase it)
nor can disconnected pieces of the evolution increase the
weight. Thus we see that the distance of the code remains
unchanged.

V. CONSEQUENCES FOR QUBIT CODES IN D
DIMENSIONS

So far our construction have been to take a generic cir-
cuit, without regards to whether this circuit is acting on
qubits that are laid out spatially, and transforms it into
a subsystem code. The important point is that the graph
we have constructed is constant valence. In order to dis-
cuss how this impacts constructions with spatial locality
we will need one important method, a method for swap-

ping qubits. Actually given the traditional definition of
a local operator in D dimensions for which we are trying
to defeat the distance bounds we need not worry about
this. The reason is that quantum wires can cross over
each other and we will still have a graph which, when
embedded on a regular lattices has operators that only
have support over a constant number of qubits.
Now consider the special case of concatenated codes.

Concatenation is the process of encoding multiple times:
concatenating code C1 with C2 is the code where code
words are first encoded using C1 and then these encoded
qubits are used as the basic qubits to be encoded into
C2. We will deal here only with codes concatenated with
themselves. As we have noted in the introduction, a
[[n, 1, d]] code concatenated r times has N = nr qubits, 1
encoded qubit and a distance of dr = nr logn d = N logn d.
Further, and importantly for embedding these construc-
tions into D spatial dimensions, these codes have syn-
drome measurement circuits that are small depth because
they can be diagnosed level by level, modulo the fact that
we have to measure qubits that are spatially distant from
each other. Thus the circuits for measuring these codes
have depth O(r) = O(logN) without regard to locality.
But our constructions allow for wires to not always run
forward in time: we can run a wire from any one qubit to
another, as long as we respect the ordering of our original
circuit we will obtain results robust to our code construc-
tion. This implies the following: in D+1 dimensions we
can construct a concatenated code on a L×D ×O(logL)
lattice that has the properties of a [LD, 1, LD logn d] code.
For the five qubit code, for example, where n = 5 and
d = 3, and D = 1 this yields a two dimensional regular
lattice with constant sized neighbor subsystem generators
that has a distance that scales as O(L≈0.68) For D = 2
this yields a three dimensional regular lattice with con-
stant size neighbor subsystem generators that scales as
O(L≈1.37). This is greater than the best known code in
three spatial dimensions [16].

VI. QUDIT GENERALIZATION AND
SATURATING THE BRAYVI-TERHAL BOUND

IN 3 DIMENSIONS

Our results can be generalized to the case where in-
stead of qubits we have subsystems that are made of d
dimensional quantum systems, qudits, where d is a prime
number and these in turn can be used to saturate the
bound of Bravyi and Terhal in 3 (and higher) dimensions.
Here we sketch this result. To define stabilizer codes on
our qudits we must define the d dimensional analogs of
the Pauli operators [31]. In particular we define

Z =
d−1�

i=0

ωi|i��i| and X =
d−1�

i=0

|i+ 1��i| (40)

where ω = exp(2πi/d) and the addition is done modulo d.
We have overloaded the Pauli symbols, but it should be

MBQC scheme for circuit, 
convert to subsystem code 

on N qubits

Claim: RHS code is [N,k,d] code* 
* = subject to circuit having a particular FT like criteria



Dictionary:
5

θ : V → [0, 2π), the stabilizer group generated of twisted
stabilizer generators: �Sv(θv), v ∈ V �.

Circuit Element Graph Gadget

|0� ��������
X

��������
X

� �� �
input

����������������
X

� �� �
internal

��������
X

��������
X

� �� �
output

��������
X

��������
H R(θ) ��������

X

θ

H R(θ) •

H R(φ) •

��������
X

θ

��������
X

φ

H R(θ1) •

H R(θ2) •
.
.
.

.

.

.

.

.

.

H R(θm−1) •

H R(θm) •

��������
X

θ1

��������
X

θ2

��������
X

θm−1

��������
X

θm

H ����X ��������
X����X ��������

X
��������
X

TABLE I. Dictionary for converting from quantum circuit to

adiabatic Hamiltonian or, in our case, subsystem code. The

only circuit elements that are not self-evident are the final

one, which is a Hadamard followed by a measurement in the

X basis and the wires which are either inputs, outputs, or

neither (internal). Further R(θ) = exp(−iθZ/2). These are

then converted to a graph via replacing the circuit elements

by the appropriate vertices and edges of the gadget, see main

text for details.

Let us now briefly recall the method for constructing
a Hamiltonian that can be adiabatically deformed to en-
act a quantum computation [46]. One first starts with
a quantum circuit expressed in terms of a universal gate
set. In particular one must express the quantum circuit
in terms of circuit elements listed in Table I. Then one

uses the dictionary in Table I to convert this circuit to a
labeled graph. This graph has two types of nodes, nodes
that will have a twisted vertex operator associated with
them (denote by single circles in Table I) and those that
will not have a twisted vertex operator associated with
them (denoted by double circles in Table I). Further the
vertices in these graphs may have angles associated with
them, corresponding to the angle of the twisted vertex op-
erator (no angle listed implies the operator is untwisted,
θv = 0.) From this description one obtains a description
of the initial Hamiltonian of the system

Hi = −
�

v∈W
Sv(θv) (4)

where W is the set of graph vertices that are not de-
noted by double circles. If there is information input
into the quantum circuit, this sum will not be over all
vertices. This in turn will imply that Hi’s ground state
is degenerate: it will encode as many qubits as there are
incoming qubits into the quantum circuit. Then one pro-
ceeds by turning on −X fields everywhere there are X’s
in the graph that has been constructed, while turning off
any terms in Hi that anti-commute with the −X being
turned on. At the end of all of this, there will be output
quantum information localized on the appropriate vertex
(where no X appears). Or if one wishes to make a mea-
surement, one can measure the node in the measurement
gadget (thus the X label in the graph gadget for mea-
surement represents a measurement of X, not a field to
be applied.) In [46] it was shown that this scheme indeed
produces an output which is identical to the circuit that
it was constructed from. We will not review this proof
but our construct of a subsystem code uses the details of
this proof.

II. TWO QUBIT CODE EXAMPLE

We begin by describing a simple example of our con-
struction. Recall that the basic idea of our construction
is to take a syndrome measuring circuit for a quantum
error correcting code and convert it to a subsystem code.
We begin by among the simplest such syndrome mea-
surements possible: a circuit with two qubits and a mea-
surement of the Z ⊗ Z operator on these qubits. Call
these two qubits, qubit 1 and qubit 2. A circuit for this
measurement is given by

1{ •
|0� �������� �������� ����Z

2{ •

(5)

where we have labeled the qubits that are being measured
as 1 and 2. We will be using the dictionary in Table I,
so we convert this into a circuit in the universal gate set

circuit to labeled graph

labeled graph describes group

include: vertex operators for
non-double framed vertices 

include: single qubit for each X
labeled vertex

for no    label



Circuit, Circuit, Graph
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θ : V → [0, 2π), the stabilizer group generated of twisted
stabilizer generators: �Sv(θv), v ∈ V �.

Circuit Element Graph Gadget

|0� ��������
X

��������
X

� �� �
input

����������������
X

� �� �
internal

��������
X

��������
X

� �� �
output

��������
X

��������
H R(θ) ��������

X

θ

H R(θ) •

H R(φ) •

��������
X

θ

��������
X

φ

H R(θ1) •

H R(θ2) •
.
.
.

.

.

.

.

.

.

H R(θm−1) •

H R(θm) •

��������
X

θ1

��������
X

θ2

��������
X

θm−1

��������
X

θm

H ����X ��������
X����X ��������

X
��������
X

TABLE I. Dictionary for converting from quantum circuit to

adiabatic Hamiltonian or, in our case, subsystem code. The

only circuit elements that are not self-evident are the final

one, which is a Hadamard followed by a measurement in the

X basis and the wires which are either inputs, outputs, or

neither (internal). Further R(θ) = exp(−iθZ/2). These are

then converted to a graph via replacing the circuit elements

by the appropriate vertices and edges of the gadget, see main

text for details.

Let us now briefly recall the method for constructing
a Hamiltonian that can be adiabatically deformed to en-
act a quantum computation [46]. One first starts with
a quantum circuit expressed in terms of a universal gate
set. In particular one must express the quantum circuit
in terms of circuit elements listed in Table I. Then one

uses the dictionary in Table I to convert this circuit to a
labeled graph. This graph has two types of nodes, nodes
that will have a twisted vertex operator associated with
them (denote by single circles in Table I) and those that
will not have a twisted vertex operator associated with
them (denoted by double circles in Table I). Further the
vertices in these graphs may have angles associated with
them, corresponding to the angle of the twisted vertex op-
erator (no angle listed implies the operator is untwisted,
θv = 0.) From this description one obtains a description
of the initial Hamiltonian of the system

Hi = −
�

v∈W
Sv(θv) (4)

where W is the set of graph vertices that are not de-
noted by double circles. If there is information input
into the quantum circuit, this sum will not be over all
vertices. This in turn will imply that Hi’s ground state
is degenerate: it will encode as many qubits as there are
incoming qubits into the quantum circuit. Then one pro-
ceeds by turning on −X fields everywhere there are X’s
in the graph that has been constructed, while turning off
any terms in Hi that anti-commute with the −X being
turned on. At the end of all of this, there will be output
quantum information localized on the appropriate vertex
(where no X appears). Or if one wishes to make a mea-
surement, one can measure the node in the measurement
gadget (thus the X label in the graph gadget for mea-
surement represents a measurement of X, not a field to
be applied.) In [46] it was shown that this scheme indeed
produces an output which is identical to the circuit that
it was constructed from. We will not review this proof
but our construct of a subsystem code uses the details of
this proof.

II. TWO QUBIT CODE EXAMPLE

We begin by describing a simple example of our con-
struction. Recall that the basic idea of our construction
is to take a syndrome measuring circuit for a quantum
error correcting code and convert it to a subsystem code.
We begin by among the simplest such syndrome mea-
surements possible: a circuit with two qubits and a mea-
surement of the Z ⊗ Z operator on these qubits. Call
these two qubits, qubit 1 and qubit 2. A circuit for this
measurement is given by

1{ •
|0� �������� �������� ����Z

2{ •

(5)

where we have labeled the qubits that are being measured
as 1 and 2. We will be using the dictionary in Table I,
so we convert this into a circuit in the universal gate set

Simplest stabilizer code: 
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θ : V → [0, 2π), the stabilizer group generated of twisted
stabilizer generators: �Sv(θv), v ∈ V �.

Circuit Element Graph Gadget

|0� ��������
X

��������
X

� �� �
input

����������������
X

� �� �
internal

��������
X

��������
X

� �� �
output

��������
X

��������
H R(θ) ��������

X

θ

H R(θ) •

H R(φ) •

��������
X

θ

��������
X

φ

H R(θ1) •

H R(θ2) •
.
.
.

.

.

.

.

.

.

H R(θm−1) •

H R(θm) •

��������
X

θ1

��������
X

θ2

��������
X

θm−1

��������
X

θm

H ����X ��������
X����X ��������

X
��������
X

TABLE I. Dictionary for converting from quantum circuit to

adiabatic Hamiltonian or, in our case, subsystem code. The

only circuit elements that are not self-evident are the final

one, which is a Hadamard followed by a measurement in the

X basis and the wires which are either inputs, outputs, or

neither (internal). Further R(θ) = exp(−iθZ/2). These are

then converted to a graph via replacing the circuit elements

by the appropriate vertices and edges of the gadget, see main

text for details.

Let us now briefly recall the method for constructing
a Hamiltonian that can be adiabatically deformed to en-
act a quantum computation [46]. One first starts with
a quantum circuit expressed in terms of a universal gate
set. In particular one must express the quantum circuit
in terms of circuit elements listed in Table I. Then one

uses the dictionary in Table I to convert this circuit to a
labeled graph. This graph has two types of nodes, nodes
that will have a twisted vertex operator associated with
them (denote by single circles in Table I) and those that
will not have a twisted vertex operator associated with
them (denoted by double circles in Table I). Further the
vertices in these graphs may have angles associated with
them, corresponding to the angle of the twisted vertex op-
erator (no angle listed implies the operator is untwisted,
θv = 0.) From this description one obtains a description
of the initial Hamiltonian of the system

Hi = −
�

v∈W
Sv(θv) (4)

where W is the set of graph vertices that are not de-
noted by double circles. If there is information input
into the quantum circuit, this sum will not be over all
vertices. This in turn will imply that Hi’s ground state
is degenerate: it will encode as many qubits as there are
incoming qubits into the quantum circuit. Then one pro-
ceeds by turning on −X fields everywhere there are X’s
in the graph that has been constructed, while turning off
any terms in Hi that anti-commute with the −X being
turned on. At the end of all of this, there will be output
quantum information localized on the appropriate vertex
(where no X appears). Or if one wishes to make a mea-
surement, one can measure the node in the measurement
gadget (thus the X label in the graph gadget for mea-
surement represents a measurement of X, not a field to
be applied.) In [46] it was shown that this scheme indeed
produces an output which is identical to the circuit that
it was constructed from. We will not review this proof
but our construct of a subsystem code uses the details of
this proof.

II. TWO QUBIT CODE EXAMPLE

We begin by describing a simple example of our con-
struction. Recall that the basic idea of our construction
is to take a syndrome measuring circuit for a quantum
error correcting code and convert it to a subsystem code.
We begin by among the simplest such syndrome mea-
surements possible: a circuit with two qubits and a mea-
surement of the Z ⊗ Z operator on these qubits. Call
these two qubits, qubit 1 and qubit 2. A circuit for this
measurement is given by

1{ •
|0� �������� �������� ����Z

2{ •

(5)

where we have labeled the qubits that are being measured
as 1 and 2. We will be using the dictionary in Table I,
so we convert this into a circuit in the universal gate set
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of this table:

1{ H H •

|0� H • H H ����X

2{ H H •

(6)

Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:

����������������
X

��������
X

��������
X

��������
X

��������
��������
X

��������
X

��������
X

��������
X

��������
X

����������������
X

��������
X

��������
X

��������
X

��������

(7)

We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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θ : V → [0, 2π), the stabilizer group generated of twisted
stabilizer generators: �Sv(θv), v ∈ V �.

Circuit Element Graph Gadget

|0� ��������
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X
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input

����������������
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��������
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��������
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output

��������
X

��������
H R(θ) ��������

X

θ

H R(θ) •

H R(φ) •

��������
X

θ

��������
X

φ

H R(θ1) •

H R(θ2) •
.
.
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.
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H R(θm−1) •

H R(θm) •

��������
X

θ1

��������
X

θ2

��������
X

θm−1

��������
X

θm

H ����X ��������
X����X ��������

X
��������
X

TABLE I. Dictionary for converting from quantum circuit to

adiabatic Hamiltonian or, in our case, subsystem code. The

only circuit elements that are not self-evident are the final

one, which is a Hadamard followed by a measurement in the

X basis and the wires which are either inputs, outputs, or

neither (internal). Further R(θ) = exp(−iθZ/2). These are

then converted to a graph via replacing the circuit elements

by the appropriate vertices and edges of the gadget, see main

text for details.

Let us now briefly recall the method for constructing
a Hamiltonian that can be adiabatically deformed to en-
act a quantum computation [46]. One first starts with
a quantum circuit expressed in terms of a universal gate
set. In particular one must express the quantum circuit
in terms of circuit elements listed in Table I. Then one

uses the dictionary in Table I to convert this circuit to a
labeled graph. This graph has two types of nodes, nodes
that will have a twisted vertex operator associated with
them (denote by single circles in Table I) and those that
will not have a twisted vertex operator associated with
them (denoted by double circles in Table I). Further the
vertices in these graphs may have angles associated with
them, corresponding to the angle of the twisted vertex op-
erator (no angle listed implies the operator is untwisted,
θv = 0.) From this description one obtains a description
of the initial Hamiltonian of the system

Hi = −
�

v∈W
Sv(θv) (4)

where W is the set of graph vertices that are not de-
noted by double circles. If there is information input
into the quantum circuit, this sum will not be over all
vertices. This in turn will imply that Hi’s ground state
is degenerate: it will encode as many qubits as there are
incoming qubits into the quantum circuit. Then one pro-
ceeds by turning on −X fields everywhere there are X’s
in the graph that has been constructed, while turning off
any terms in Hi that anti-commute with the −X being
turned on. At the end of all of this, there will be output
quantum information localized on the appropriate vertex
(where no X appears). Or if one wishes to make a mea-
surement, one can measure the node in the measurement
gadget (thus the X label in the graph gadget for mea-
surement represents a measurement of X, not a field to
be applied.) In [46] it was shown that this scheme indeed
produces an output which is identical to the circuit that
it was constructed from. We will not review this proof
but our construct of a subsystem code uses the details of
this proof.

II. TWO QUBIT CODE EXAMPLE

We begin by describing a simple example of our con-
struction. Recall that the basic idea of our construction
is to take a syndrome measuring circuit for a quantum
error correcting code and convert it to a subsystem code.
We begin by among the simplest such syndrome mea-
surements possible: a circuit with two qubits and a mea-
surement of the Z ⊗ Z operator on these qubits. Call
these two qubits, qubit 1 and qubit 2. A circuit for this
measurement is given by

1{ •
|0� �������� �������� ����Z

2{ •

(5)

where we have labeled the qubits that are being measured
as 1 and 2. We will be using the dictionary in Table I,
so we convert this into a circuit in the universal gate set

Simplest stabilizer code: 
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θ : V → [0, 2π), the stabilizer group generated of twisted
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Circuit Element Graph Gadget
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��������
X
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θ
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TABLE I. Dictionary for converting from quantum circuit to

adiabatic Hamiltonian or, in our case, subsystem code. The

only circuit elements that are not self-evident are the final

one, which is a Hadamard followed by a measurement in the

X basis and the wires which are either inputs, outputs, or

neither (internal). Further R(θ) = exp(−iθZ/2). These are

then converted to a graph via replacing the circuit elements

by the appropriate vertices and edges of the gadget, see main

text for details.

Let us now briefly recall the method for constructing
a Hamiltonian that can be adiabatically deformed to en-
act a quantum computation [46]. One first starts with
a quantum circuit expressed in terms of a universal gate
set. In particular one must express the quantum circuit
in terms of circuit elements listed in Table I. Then one

uses the dictionary in Table I to convert this circuit to a
labeled graph. This graph has two types of nodes, nodes
that will have a twisted vertex operator associated with
them (denote by single circles in Table I) and those that
will not have a twisted vertex operator associated with
them (denoted by double circles in Table I). Further the
vertices in these graphs may have angles associated with
them, corresponding to the angle of the twisted vertex op-
erator (no angle listed implies the operator is untwisted,
θv = 0.) From this description one obtains a description
of the initial Hamiltonian of the system

Hi = −
�

v∈W
Sv(θv) (4)

where W is the set of graph vertices that are not de-
noted by double circles. If there is information input
into the quantum circuit, this sum will not be over all
vertices. This in turn will imply that Hi’s ground state
is degenerate: it will encode as many qubits as there are
incoming qubits into the quantum circuit. Then one pro-
ceeds by turning on −X fields everywhere there are X’s
in the graph that has been constructed, while turning off
any terms in Hi that anti-commute with the −X being
turned on. At the end of all of this, there will be output
quantum information localized on the appropriate vertex
(where no X appears). Or if one wishes to make a mea-
surement, one can measure the node in the measurement
gadget (thus the X label in the graph gadget for mea-
surement represents a measurement of X, not a field to
be applied.) In [46] it was shown that this scheme indeed
produces an output which is identical to the circuit that
it was constructed from. We will not review this proof
but our construct of a subsystem code uses the details of
this proof.

II. TWO QUBIT CODE EXAMPLE

We begin by describing a simple example of our con-
struction. Recall that the basic idea of our construction
is to take a syndrome measuring circuit for a quantum
error correcting code and convert it to a subsystem code.
We begin by among the simplest such syndrome mea-
surements possible: a circuit with two qubits and a mea-
surement of the Z ⊗ Z operator on these qubits. Call
these two qubits, qubit 1 and qubit 2. A circuit for this
measurement is given by

1{ •
|0� �������� �������� ����Z

2{ •

(5)

where we have labeled the qubits that are being measured
as 1 and 2. We will be using the dictionary in Table I,
so we convert this into a circuit in the universal gate set
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of this table:

1{ H H •

|0� H • H H ����X

2{ H H •

(6)

Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:

����������������
X

��������
X

��������
X

��������
X

��������
��������
X

��������
X

��������
X

��������
X

��������
X

����������������
X

��������
X

��������
X

��������
X

��������

(7)

We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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θ : V → [0, 2π), the stabilizer group generated of twisted
stabilizer generators: �Sv(θv), v ∈ V �.
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TABLE I. Dictionary for converting from quantum circuit to

adiabatic Hamiltonian or, in our case, subsystem code. The

only circuit elements that are not self-evident are the final

one, which is a Hadamard followed by a measurement in the

X basis and the wires which are either inputs, outputs, or

neither (internal). Further R(θ) = exp(−iθZ/2). These are

then converted to a graph via replacing the circuit elements

by the appropriate vertices and edges of the gadget, see main

text for details.

Let us now briefly recall the method for constructing
a Hamiltonian that can be adiabatically deformed to en-
act a quantum computation [46]. One first starts with
a quantum circuit expressed in terms of a universal gate
set. In particular one must express the quantum circuit
in terms of circuit elements listed in Table I. Then one

uses the dictionary in Table I to convert this circuit to a
labeled graph. This graph has two types of nodes, nodes
that will have a twisted vertex operator associated with
them (denote by single circles in Table I) and those that
will not have a twisted vertex operator associated with
them (denoted by double circles in Table I). Further the
vertices in these graphs may have angles associated with
them, corresponding to the angle of the twisted vertex op-
erator (no angle listed implies the operator is untwisted,
θv = 0.) From this description one obtains a description
of the initial Hamiltonian of the system

Hi = −
�

v∈W
Sv(θv) (4)

where W is the set of graph vertices that are not de-
noted by double circles. If there is information input
into the quantum circuit, this sum will not be over all
vertices. This in turn will imply that Hi’s ground state
is degenerate: it will encode as many qubits as there are
incoming qubits into the quantum circuit. Then one pro-
ceeds by turning on −X fields everywhere there are X’s
in the graph that has been constructed, while turning off
any terms in Hi that anti-commute with the −X being
turned on. At the end of all of this, there will be output
quantum information localized on the appropriate vertex
(where no X appears). Or if one wishes to make a mea-
surement, one can measure the node in the measurement
gadget (thus the X label in the graph gadget for mea-
surement represents a measurement of X, not a field to
be applied.) In [46] it was shown that this scheme indeed
produces an output which is identical to the circuit that
it was constructed from. We will not review this proof
but our construct of a subsystem code uses the details of
this proof.

II. TWO QUBIT CODE EXAMPLE

We begin by describing a simple example of our con-
struction. Recall that the basic idea of our construction
is to take a syndrome measuring circuit for a quantum
error correcting code and convert it to a subsystem code.
We begin by among the simplest such syndrome mea-
surements possible: a circuit with two qubits and a mea-
surement of the Z ⊗ Z operator on these qubits. Call
these two qubits, qubit 1 and qubit 2. A circuit for this
measurement is given by

1{ •
|0� �������� �������� ����Z

2{ •

(5)

where we have labeled the qubits that are being measured
as 1 and 2. We will be using the dictionary in Table I,
so we convert this into a circuit in the universal gate set

6

of this table:

1{ H H •

|0� H • H H ����X

2{ H H •

(6)

Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:

����������������
X

��������
X

��������
X

��������
X

��������
��������
X

��������
X

��������
X

��������
X

��������
X

����������������
X

��������
X

��������
X

��������
X

��������

(7)

We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this

Simplest stabilizer code: 
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θ : V → [0, 2π), the stabilizer group generated of twisted
stabilizer generators: �Sv(θv), v ∈ V �.

Circuit Element Graph Gadget

|0� ��������
X

��������
X

� �� �
input

����������������
X

� �� �
internal

��������
X

��������
X

� �� �
output

��������
X

��������
H R(θ) ��������

X

θ

H R(θ) •

H R(φ) •

��������
X

θ

��������
X

φ

H R(θ1) •

H R(θ2) •
.
.
.

.

.

.

.

.

.

H R(θm−1) •

H R(θm) •

��������
X

θ1

��������
X

θ2

��������
X

θm−1

��������
X

θm

H ����X ��������
X����X ��������

X
��������
X

TABLE I. Dictionary for converting from quantum circuit to

adiabatic Hamiltonian or, in our case, subsystem code. The

only circuit elements that are not self-evident are the final

one, which is a Hadamard followed by a measurement in the

X basis and the wires which are either inputs, outputs, or

neither (internal). Further R(θ) = exp(−iθZ/2). These are

then converted to a graph via replacing the circuit elements

by the appropriate vertices and edges of the gadget, see main

text for details.

Let us now briefly recall the method for constructing
a Hamiltonian that can be adiabatically deformed to en-
act a quantum computation [46]. One first starts with
a quantum circuit expressed in terms of a universal gate
set. In particular one must express the quantum circuit
in terms of circuit elements listed in Table I. Then one

uses the dictionary in Table I to convert this circuit to a
labeled graph. This graph has two types of nodes, nodes
that will have a twisted vertex operator associated with
them (denote by single circles in Table I) and those that
will not have a twisted vertex operator associated with
them (denoted by double circles in Table I). Further the
vertices in these graphs may have angles associated with
them, corresponding to the angle of the twisted vertex op-
erator (no angle listed implies the operator is untwisted,
θv = 0.) From this description one obtains a description
of the initial Hamiltonian of the system

Hi = −
�

v∈W
Sv(θv) (4)

where W is the set of graph vertices that are not de-
noted by double circles. If there is information input
into the quantum circuit, this sum will not be over all
vertices. This in turn will imply that Hi’s ground state
is degenerate: it will encode as many qubits as there are
incoming qubits into the quantum circuit. Then one pro-
ceeds by turning on −X fields everywhere there are X’s
in the graph that has been constructed, while turning off
any terms in Hi that anti-commute with the −X being
turned on. At the end of all of this, there will be output
quantum information localized on the appropriate vertex
(where no X appears). Or if one wishes to make a mea-
surement, one can measure the node in the measurement
gadget (thus the X label in the graph gadget for mea-
surement represents a measurement of X, not a field to
be applied.) In [46] it was shown that this scheme indeed
produces an output which is identical to the circuit that
it was constructed from. We will not review this proof
but our construct of a subsystem code uses the details of
this proof.

II. TWO QUBIT CODE EXAMPLE

We begin by describing a simple example of our con-
struction. Recall that the basic idea of our construction
is to take a syndrome measuring circuit for a quantum
error correcting code and convert it to a subsystem code.
We begin by among the simplest such syndrome mea-
surements possible: a circuit with two qubits and a mea-
surement of the Z ⊗ Z operator on these qubits. Call
these two qubits, qubit 1 and qubit 2. A circuit for this
measurement is given by

1{ •
|0� �������� �������� ����Z

2{ •

(5)

where we have labeled the qubits that are being measured
as 1 and 2. We will be using the dictionary in Table I,
so we convert this into a circuit in the universal gate set
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of this table:

1{ H H •

|0� H • H H ����X

2{ H H •

(6)

Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this

6

of this table:

1{ H H •

|0� H • H H ����X

2{ H H •

(6)

Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:

����������������
X

��������
X

��������
X

��������
X

��������
��������
X

��������
X

��������
X

��������
X

��������
X

����������������
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this

12 Gauge Qubits

6

of this table:

1{ H H •

|0� H • H H ����X

2{ H H •

(6)

Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this

2 Stabilizers
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of this table:

1{ H H •

|0� H • H H ����X

2{ H H •

(6)

Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
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S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),
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�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are
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X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)
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X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)
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, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
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X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)
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, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this

Generalized Heisenberg pict:
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• Track single Pauli for state 
preps
• Update according to gates
• Update according to 
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Subsystem code:
• Track group generated by 
vertex operators and X 
operators up to given level 
• Group generates gauge 
and stabilizer group
• Keep track of logical 
qubits
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
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where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)
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X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
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where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as
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One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
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graph are then

R =
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where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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Here we have used the fact that the controlled-phase
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
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where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are
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where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code
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X̄2 = X(2,1), Z̄2 = S(2,2)
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X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
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S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),
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location. The X operators associated with the graph are
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where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)
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X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
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S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)
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where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
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X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)
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, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)
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X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)
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X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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Here we have used the fact that the controlled-phase
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
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where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)
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X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
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S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
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S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),
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where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
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X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),
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where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
this into a labeled graph:
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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Here we have used the fact that the controlled-phase
gates can be parallelized. We then use Table I to convert
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We now define our subsystem code with the help of this
graph.

In particular, associated with this graph are the vertex
operators (no twisting is occurring here) for all of the
vertices that are not double framed, as well as individual
X operators on all of the vertices that are labeled by
X. Call the rows of our constructed graph 1, a, and 2,
respectively, and label the columns of the graph from 1
to 5. Then our code will have a qubit associated which
each tuple (i, j) with i ∈ {1, 2, a} and j ∈ {1, 2, 3, 4, 5}.
To be concrete, the vertex operators associated with the
graph are then

R =
�
S(1,2), S(1,3), S(1,4), S(1,5), S(2,2), S(2,3), S(2,4),

S(2,5), S(a,1), S(a,2), S(a,3), S(a,4), S(a,5)

�
, (8)

where S(i,j) denotes the vertex operator at the (i, j)th
location. The X operators associated with the graph are

V =
�
X(1,1), X(1,2), X(1,3), X(1,4), X(2,1), X(2,2), X(2,3),

X(2,4), X(a,1), X(a,2), X(a,3), X(a,4), X(a,5)

�
, (9)

where X(i,j) is the X operator on the (i, j)th qubit.

We will now show that if we take these operators as-
sociated with the graph (R and V) that they generate a
group of 12 gauge qubits and 2 stabilizers. Explicitly we
can construct the gauge qubits operators (listed here as

the the generators for G) for the code

X̄1 = X(1,1), Z̄1 = S(1,2)

X̄2 = X(2,1), Z̄2 = S(2,2)

X̄3 = X(a,1), Z̄3 = S(a,2)

X̄4 = X(1,2), Z̄4 = S(1,3)

X̄5 = X(2,2), Z̄5 = S(2,3)

X̄6 = X(a,2), Z̄6 = S(a,1)

X̄7 = X(1,1)X(1,3), Z̄7 = S(1,4)

X̄8 = X(2,1)X(2,3), Z̄8 = S(2,4)

X̄9 = X(1,2)X(1,4), Z̄9 = S(1,5)

X̄10 = X(2,2)X(2,4), Z̄10 = S(2,5)

X̄11 = X(a,4), Z̄11 = S(a,5)

X̄12 = X(a,5), Z̄12 = S(a,4) (10)

and the stabilizers (list here as the generators of S) for
the code,

S1 = S(1,4)S(2,4)S(a,1)S(a,3)S(a,5)

S2 = X(1,2)X(2,2)X(a,1)X(a,3)X(a,5). (11)

One can check that these operators generate the group
generated by R and V, that the logical operators for the
gauge qubits commute with each other for different en-
coded gauge qubits, but anti-commute between X̄ and Z̄,
and that the stabilizer elements commute with all of the
gauge and stabilizer operators. Further we can define the
logical qubit (non-gauge). The generators for the logical
qubits L for the code are

X̄L,1 = X(1,1)X(1,3)X(1,5)X(2,1)X(2,3)X(2,5)

Z̄L,1 = X(1,2)X(1,4)Z(1,5). (12)

These operators commute with all gauge qubit operators
and the stabilizer, and anti-commute with each other.
Thus they are a choice of logical qubit operator for the
subsystem code.
Now one can see how this subsystem code is related to

the single stabilizer two qubit code with stabilizer gen-
erator Z ⊗ Z. In particular modulo gauge operators S1

is the stabilizer Z ⊗ Z on the final two qubits located
at (1, 5) and (2, 5). Further modulo the gauge operators
the encoded logical operators are X̄L,1

∼=R X ⊗ X and
Z̄L,1

∼=R Z ⊗ I on these final two qubits. In other words
modulo the gauge operators these are exactly the code
whose syndrome the circuit we originally constructed
measured. Further we can see that the logical operators
cannot be made smaller weight by the action of the gauge
and stabilizer operators. This means nothing for Z̄L,1 be-
cause this operator can be made weight 1 by multiplying
gauge qubits, but for X̄L,1 this statement is non-trivial.
One can see this by noting that if one is going to make
the weight of this operator lowered than 2 then one must
multiply by a stabilizer or gauge operator that acts on
one of the last qubits as X. However this implies that
a Z appears on one of the 4th column qubits, and this
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ing the results in the last section, we can see that when
we apply our above subsystem code construction to a
syndrome measuring circuit this circuit will end up with
stabilizers related to stabilizers of the code we are mea-
suring. In particular we can consider circuits in which
one prepares ancilla qubits in initialized computational
basis state |0�, and then uses these ancillas to store the
result of the syndrome measurement as in the circuit di-
agram below:

U1 U2

· · ·

Un−k

· · ·

· · ·

...
...

...
· · ·

|0� �������� �����
|0� �������� �����

|0� �������� �����
where the Ui with the conditional X gates are themselves
complex circuits. Then for these types of circuits it is
easy to derive the gauge, logical, and stabilizer groups us-
ing our theorem from the previous section. The stabilizer
group in particular will have two kinds of generators. The
first of these is are the stabilizers that are being measured
times a pattern of X errors on the non-output qubits,
including an X on the ancilla qubit that is being mea-
sured. The second kind of stabilizer corresponds to the
measurement of X on the ancilla being measured along
with a patter of X error on the non-output qubits. Thus
a product of these and gauge group operators gives the
stabilizer on the code block, along with the stabilizer cor-
responding to the measurement results for the ancillas.
Similarly one can calculate that the logical qubits will be
the logical operators for the code on the output qubits,
along with a pattern of X operators on the qubits prior
to these output qubits. Thus it is easy to see, using the
prior sections results and how the syndrome measuring
circuits propagate syndromes and change upon measur-
ing the ancillas that the code we have obtained is related
to our original code.

But now we note that not all circuits for measurement
of syndromes will result in interesting codes. In partic-
ular in order to guarantee that the distance of our sub-
system code is at least the distance of the original code
we are considering, we must insure that the measurement
circuit we use does not destroy the properties of the code
during the syndrome measurement process.

Consider, for an example of where this problem comes
from, the following implementation of a swap gate be-
tween two qubits where we have labeled qubits in the

gadget:��������I1
��������1 ��������2 ��������3 ��������O1

��������I2
��������4 ��������5 ��������6 ��������O2

(28)

If this swap gate was used on the code block qubits, we
will show that it can result in a reduction of the distance
of the code. In particular, consider the two qubit oper-
ator at the output of this gadget, [X]3[Z]O1 [Z]6 where
we use [P ]i to denote Pauli operator P on qubit i. If we
multiply this by the vertex operator on 3 this becomes
[Z]2. Thus a two qubit output operator, in the middle
of the gadget is now a weight 1 operator. If we propa-
gate it back further it will eventually be a > 1 weight
operator, but in thinking about the distance of the code
we are producing, such weight changing operators can
reduce the distance of the code. Thus we must design
our circuits carefully to get around this problem.
Let us now turn to the circuits we will use to measure

the syndromes. We will begin with circuits that invoke a
degree of parallelism that yields constructed graphs that
have valences that are not constant, but that will preserve
the weight of the code nicely. We will then show how
not to stretch out this parallelism as it will run into the
problem we have identified above. We the will show how
to fix this problem, and in particular show how one can
use expander graphs [50] for a very efficient way to make
this fix.
Consider first the following circuit for measuring the

operator Z⊗4:

H H •

H H •

H H •

H H •

|0� H • • • • ����X

(29)

We can “parallelize” the phase gates in this construction,
which results in a circuit that looks like

H H •

H H •

H H •

H H •

|0� H • ����X

(30)

where the CZ gates are not nearest neighbor, but be-
tween the last qubits and the first four qubits. When we

X Z
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ing the results in the last section, we can see that when
we apply our above subsystem code construction to a
syndrome measuring circuit this circuit will end up with
stabilizers related to stabilizers of the code we are mea-
suring. In particular we can consider circuits in which
one prepares ancilla qubits in initialized computational
basis state |0�, and then uses these ancillas to store the
result of the syndrome measurement as in the circuit di-
agram below:
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where the Ui with the conditional X gates are themselves
complex circuits. Then for these types of circuits it is
easy to derive the gauge, logical, and stabilizer groups us-
ing our theorem from the previous section. The stabilizer
group in particular will have two kinds of generators. The
first of these is are the stabilizers that are being measured
times a pattern of X errors on the non-output qubits,
including an X on the ancilla qubit that is being mea-
sured. The second kind of stabilizer corresponds to the
measurement of X on the ancilla being measured along
with a patter of X error on the non-output qubits. Thus
a product of these and gauge group operators gives the
stabilizer on the code block, along with the stabilizer cor-
responding to the measurement results for the ancillas.
Similarly one can calculate that the logical qubits will be
the logical operators for the code on the output qubits,
along with a pattern of X operators on the qubits prior
to these output qubits. Thus it is easy to see, using the
prior sections results and how the syndrome measuring
circuits propagate syndromes and change upon measur-
ing the ancillas that the code we have obtained is related
to our original code.

But now we note that not all circuits for measurement
of syndromes will result in interesting codes. In partic-
ular in order to guarantee that the distance of our sub-
system code is at least the distance of the original code
we are considering, we must insure that the measurement
circuit we use does not destroy the properties of the code
during the syndrome measurement process.

Consider, for an example of where this problem comes
from, the following implementation of a swap gate be-
tween two qubits where we have labeled qubits in the

gadget:��������I1
��������1 ��������2 ��������3 ��������O1

��������I2
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(28)

If this swap gate was used on the code block qubits, we
will show that it can result in a reduction of the distance
of the code. In particular, consider the two qubit oper-
ator at the output of this gadget, [X]3[Z]O1 [Z]6 where
we use [P ]i to denote Pauli operator P on qubit i. If we
multiply this by the vertex operator on 3 this becomes
[Z]2. Thus a two qubit output operator, in the middle
of the gadget is now a weight 1 operator. If we propa-
gate it back further it will eventually be a > 1 weight
operator, but in thinking about the distance of the code
we are producing, such weight changing operators can
reduce the distance of the code. Thus we must design
our circuits carefully to get around this problem.
Let us now turn to the circuits we will use to measure

the syndromes. We will begin with circuits that invoke a
degree of parallelism that yields constructed graphs that
have valences that are not constant, but that will preserve
the weight of the code nicely. We will then show how
not to stretch out this parallelism as it will run into the
problem we have identified above. We the will show how
to fix this problem, and in particular show how one can
use expander graphs [50] for a very efficient way to make
this fix.
Consider first the following circuit for measuring the

operator Z⊗4:

H H •

H H •

H H •

H H •

|0� H • • • • ����X

(29)

We can “parallelize” the phase gates in this construction,
which results in a circuit that looks like

H H •

H H •

H H •

H H •

|0� H • ����X

(30)

where the CZ gates are not nearest neighbor, but be-
tween the last qubits and the first four qubits. When we
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ing the results in the last section, we can see that when
we apply our above subsystem code construction to a
syndrome measuring circuit this circuit will end up with
stabilizers related to stabilizers of the code we are mea-
suring. In particular we can consider circuits in which
one prepares ancilla qubits in initialized computational
basis state |0�, and then uses these ancillas to store the
result of the syndrome measurement as in the circuit di-
agram below:
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where the Ui with the conditional X gates are themselves
complex circuits. Then for these types of circuits it is
easy to derive the gauge, logical, and stabilizer groups us-
ing our theorem from the previous section. The stabilizer
group in particular will have two kinds of generators. The
first of these is are the stabilizers that are being measured
times a pattern of X errors on the non-output qubits,
including an X on the ancilla qubit that is being mea-
sured. The second kind of stabilizer corresponds to the
measurement of X on the ancilla being measured along
with a patter of X error on the non-output qubits. Thus
a product of these and gauge group operators gives the
stabilizer on the code block, along with the stabilizer cor-
responding to the measurement results for the ancillas.
Similarly one can calculate that the logical qubits will be
the logical operators for the code on the output qubits,
along with a pattern of X operators on the qubits prior
to these output qubits. Thus it is easy to see, using the
prior sections results and how the syndrome measuring
circuits propagate syndromes and change upon measur-
ing the ancillas that the code we have obtained is related
to our original code.

But now we note that not all circuits for measurement
of syndromes will result in interesting codes. In partic-
ular in order to guarantee that the distance of our sub-
system code is at least the distance of the original code
we are considering, we must insure that the measurement
circuit we use does not destroy the properties of the code
during the syndrome measurement process.

Consider, for an example of where this problem comes
from, the following implementation of a swap gate be-
tween two qubits where we have labeled qubits in the

gadget��������I1
��������1 ��������2 ��������3 ��������O1

��������I2
��������4 ��������5 ��������6 ��������O2

(29)

where the corresponding circuit for this gadget is

H • H • H •

H • H • H •

(30)

If this swap gate was used on the code block qubits, we
will show that it can result in a reduction of the distance
of the code. In particular, consider the two qubit oper-
ator at the output of this gadget, [X]3[Z]O1 [Z]6 where
we use [P ]i to denote Pauli operator P on qubit i. If we
multiply this by the vertex operator on 3 this becomes
[Z]2. Thus a two qubit output operator, in the middle
of the gadget is now a weight 1 operator. If we propa-
gate it back further it will eventually be a > 1 weight
operator, but in thinking about the distance of the code
we are producing, such weight changing operators can
reduce the distance of the code. Thus we must design
our circuits carefully to get around this problem.
Further note that this is related to how Pauli operators

propagate back through this circuit. In particular the
circuit identity that this circuit

H • H • H • X

H • H • H • Z

(31)

is equivalent to this circuit

H • H • Z H •

H • H • H •

(32)

Let us now turn to the circuits we will use to measure
the syndromes. We will begin with circuits that invoke a
degree of parallelism that yields constructed graphs that
have valences that are not constant, but that will preserve
the weight of the code nicely. We will then show how
not to stretch out this parallelism as it will run into the
problem we have identified above. We the will show how
to fix this problem, and in particular show how one can
use expander graphs [50] for a very efficient way to make
this fix.
Consider first the following circuit for measuring the

operator Z⊗4:

H H •

H H •

H H •

H H •

|0� H • • • • ����X

(33)
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we apply our above subsystem code construction to a
syndrome measuring circuit this circuit will end up with
stabilizers related to stabilizers of the code we are mea-
suring. In particular we can consider circuits in which
one prepares ancilla qubits in initialized computational
basis state |0�, and then uses these ancillas to store the
result of the syndrome measurement as in the circuit di-
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where the Ui with the conditional X gates are themselves
complex circuits. Then for these types of circuits it is
easy to derive the gauge, logical, and stabilizer groups us-
ing our theorem from the previous section. The stabilizer
group in particular will have two kinds of generators. The
first of these is are the stabilizers that are being measured
times a pattern of X errors on the non-output qubits,
including an X on the ancilla qubit that is being mea-
sured. The second kind of stabilizer corresponds to the
measurement of X on the ancilla being measured along
with a patter of X error on the non-output qubits. Thus
a product of these and gauge group operators gives the
stabilizer on the code block, along with the stabilizer cor-
responding to the measurement results for the ancillas.
Similarly one can calculate that the logical qubits will be
the logical operators for the code on the output qubits,
along with a pattern of X operators on the qubits prior
to these output qubits. Thus it is easy to see, using the
prior sections results and how the syndrome measuring
circuits propagate syndromes and change upon measur-
ing the ancillas that the code we have obtained is related
to our original code.

But now we note that not all circuits for measurement
of syndromes will result in interesting codes. In partic-
ular in order to guarantee that the distance of our sub-
system code is at least the distance of the original code
we are considering, we must insure that the measurement
circuit we use does not destroy the properties of the code
during the syndrome measurement process.

Consider, for an example of where this problem comes
from, the following implementation of a swap gate be-
tween two qubits where we have labeled qubits in the

gadget��������I1
��������1 ��������2 ��������3 ��������O1

��������I2
��������4 ��������5 ��������6 ��������O2

(29)

where the corresponding circuit for this gadget is

H • H • H •

H • H • H •

(30)

If this swap gate was used on the code block qubits, we
will show that it can result in a reduction of the distance
of the code. In particular, consider the two qubit oper-
ator at the output of this gadget, [X]3[Z]O1 [Z]6 where
we use [P ]i to denote Pauli operator P on qubit i. If we
multiply this by the vertex operator on 3 this becomes
[Z]2. Thus a two qubit output operator, in the middle
of the gadget is now a weight 1 operator. If we propa-
gate it back further it will eventually be a > 1 weight
operator, but in thinking about the distance of the code
we are producing, such weight changing operators can
reduce the distance of the code. Thus we must design
our circuits carefully to get around this problem.
Further note that this is related to how Pauli operators

propagate back through this circuit. In particular the
circuit identity that this circuit

H • H • H • X

H • H • H • Z

(31)

is equivalent to this circuit

H • H • Z H •

H • H • H •

(32)

Let us now turn to the circuits we will use to measure
the syndromes. We will begin with circuits that invoke a
degree of parallelism that yields constructed graphs that
have valences that are not constant, but that will preserve
the weight of the code nicely. We will then show how
not to stretch out this parallelism as it will run into the
problem we have identified above. We the will show how
to fix this problem, and in particular show how one can
use expander graphs [50] for a very efficient way to make
this fix.
Consider first the following circuit for measuring the

operator Z⊗4:

H H •

H H •

H H •

H H •

|0� H • • • • ����X

(33)
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ing the results in the last section, we can see that when
we apply our above subsystem code construction to a
syndrome measuring circuit this circuit will end up with
stabilizers related to stabilizers of the code we are mea-
suring. In particular we can consider circuits in which
one prepares ancilla qubits in initialized computational
basis state |0�, and then uses these ancillas to store the
result of the syndrome measurement as in the circuit di-
agram below:

U1 U2

· · ·

Un−k

· · ·

· · ·

...
...

...
· · ·

|0� �������� �����
|0� �������� �����
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first of these is are the stabilizers that are being measured
times a pattern of X errors on the non-output qubits,
including an X on the ancilla qubit that is being mea-
sured. The second kind of stabilizer corresponds to the
measurement of X on the ancilla being measured along
with a patter of X error on the non-output qubits. Thus
a product of these and gauge group operators gives the
stabilizer on the code block, along with the stabilizer cor-
responding to the measurement results for the ancillas.
Similarly one can calculate that the logical qubits will be
the logical operators for the code on the output qubits,
along with a pattern of X operators on the qubits prior
to these output qubits. Thus it is easy to see, using the
prior sections results and how the syndrome measuring
circuits propagate syndromes and change upon measur-
ing the ancillas that the code we have obtained is related
to our original code.

But now we note that not all circuits for measurement
of syndromes will result in interesting codes. In partic-
ular in order to guarantee that the distance of our sub-
system code is at least the distance of the original code
we are considering, we must insure that the measurement
circuit we use does not destroy the properties of the code
during the syndrome measurement process.

Consider, for an example of where this problem comes
from, the following implementation of a swap gate be-
tween two qubits where we have labeled qubits in the
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where the corresponding circuit for this gadget is
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If this swap gate was used on the code block qubits, we
will show that it can result in a reduction of the distance
of the code. In particular, consider the two qubit oper-
ator at the output of this gadget, [X]3[Z]O1 [Z]6 where
we use [P ]i to denote Pauli operator P on qubit i. If we
multiply this by the vertex operator on 3 this becomes
[Z]2. Thus a two qubit output operator, in the middle
of the gadget is now a weight 1 operator. If we propa-
gate it back further it will eventually be a > 1 weight
operator, but in thinking about the distance of the code
we are producing, such weight changing operators can
reduce the distance of the code. Thus we must design
our circuits carefully to get around this problem.
Let us now turn to the circuits we will use to measure

the syndromes. We will begin with circuits that invoke a
degree of parallelism that yields constructed graphs that
have valences that are not constant, but that will preserve
the weight of the code nicely. We will then show how
not to stretch out this parallelism as it will run into the
problem we have identified above. We the will show how
to fix this problem, and in particular show how one can
use expander graphs [50] for a very efficient way to make
this fix.
Consider first the following circuit for measuring the

operator Z⊗4:

H H •

H H •

H H •

H H •

|0� H • • • • ����X

(31)

We can “parallelize” the phase gates in this construction,
which results in a circuit that looks like

H H •

H H •

H H •

H H •

|0� H • ����X

(32)
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we apply our above subsystem code construction to a
syndrome measuring circuit this circuit will end up with
stabilizers related to stabilizers of the code we are mea-
suring. In particular we can consider circuits in which
one prepares ancilla qubits in initialized computational
basis state |0�, and then uses these ancillas to store the
result of the syndrome measurement as in the circuit di-
agram below:
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where the Ui with the conditional X gates are themselves
complex circuits. Then for these types of circuits it is
easy to derive the gauge, logical, and stabilizer groups us-
ing our theorem from the previous section. The stabilizer
group in particular will have two kinds of generators. The
first of these is are the stabilizers that are being measured
times a pattern of X errors on the non-output qubits,
including an X on the ancilla qubit that is being mea-
sured. The second kind of stabilizer corresponds to the
measurement of X on the ancilla being measured along
with a patter of X error on the non-output qubits. Thus
a product of these and gauge group operators gives the
stabilizer on the code block, along with the stabilizer cor-
responding to the measurement results for the ancillas.
Similarly one can calculate that the logical qubits will be
the logical operators for the code on the output qubits,
along with a pattern of X operators on the qubits prior
to these output qubits. Thus it is easy to see, using the
prior sections results and how the syndrome measuring
circuits propagate syndromes and change upon measur-
ing the ancillas that the code we have obtained is related
to our original code.

But now we note that not all circuits for measurement
of syndromes will result in interesting codes. In partic-
ular in order to guarantee that the distance of our sub-
system code is at least the distance of the original code
we are considering, we must insure that the measurement
circuit we use does not destroy the properties of the code
during the syndrome measurement process.

Consider, for an example of where this problem comes
from, the following implementation of a swap gate be-
tween two qubits where we have labeled qubits in the

gadget:��������I1
��������1 ��������2 ��������3 ��������O1

��������I2
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If this swap gate was used on the code block qubits, we
will show that it can result in a reduction of the distance
of the code. In particular, consider the two qubit oper-
ator at the output of this gadget, [X]3[Z]O1 [Z]6 where
we use [P ]i to denote Pauli operator P on qubit i. If we
multiply this by the vertex operator on 3 this becomes
[Z]2. Thus a two qubit output operator, in the middle
of the gadget is now a weight 1 operator. If we propa-
gate it back further it will eventually be a > 1 weight
operator, but in thinking about the distance of the code
we are producing, such weight changing operators can
reduce the distance of the code. Thus we must design
our circuits carefully to get around this problem.
Let us now turn to the circuits we will use to measure

the syndromes. We will begin with circuits that invoke a
degree of parallelism that yields constructed graphs that
have valences that are not constant, but that will preserve
the weight of the code nicely. We will then show how
not to stretch out this parallelism as it will run into the
problem we have identified above. We the will show how
to fix this problem, and in particular show how one can
use expander graphs [50] for a very efficient way to make
this fix.
Consider first the following circuit for measuring the

operator Z⊗4:

H H •

H H •

H H •

H H •

|0� H • • • • ����X

(29)

We can “parallelize” the phase gates in this construction,
which results in a circuit that looks like

H H •

H H •

H H •

H H •

|0� H • ����X

(30)

where the CZ gates are not nearest neighbor, but be-
tween the last qubits and the first four qubits. When we

equiv

=

equiv

swap



An Obstacle

weight d logical weight <d logical

Need to design circuits that do not lower weight of
logicals as they are propagated back through code 
using gauge operators (FT criteria)



One solution

Expander graph
Wire vertices to block
Subdivide
Label all by X



Main Result (AGAIN)
With careful use of syndrome measuring circuits,
one can turn any [n,k,d] stabilizer code into a 
spatially local code with [N,r,k,d] code,
where N = O(size of syndrome measuring circuit)



Bravyi-Terhal Bounds
Concatenated code: nr qubits, distance dr=nr log_n d 

L

L L2

distance d = L2 log_n d

distance d = L1.365

Further, this distance is ONLY in non-“time” direction

If one uses polynomial codes (qudits), one can 
saturate d = L2 



Adiabatic Cluster State QC
By turning on single qubit Hamiltonians while turning off 
parts of the cluster state Hamiltonian, we can enact a 
quantum circuit:

P

|+� H R H • �����
|+� H P H • �����

[Bacon and Flammia, Phys. Rev.  A 82, 030303R (2010)]
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Adiabatic Cluster State QC
By turning on single qubit Hamiltonians while turning off 
parts of the cluster state Hamiltonian, we can enact a 
quantum circuit:

P

XX

PX X

R X

X

X

X

|+� H R H • �����
|+� H P H • �����

Z

Z

[Bacon and Flammia, Phys. Rev.  A 82, 030303R (2010)]



Quantum Transistor

1. Many-body system in its ground state

[Bacon, Crosswhite, Flammia “Adiabatic Quantum Transistors” (2010)
ask me for a copy] 



Quantum Transistor

1. Many-body system in its ground state

2. Qubits localized on one side of the device

[Bacon, Crosswhite, Flammia “Adiabatic Quantum Transistors” (2010)
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Quantum Transistor

1. Many-body system in its ground state

2. Qubits localized on one side of the device

3. Apply a strong 1-qubit external field to device

[Bacon, Crosswhite, Flammia “Adiabatic Quantum Transistors” (2010)
ask me for a copy] 
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Quantum Transistor

1. Many-body system in its ground state

2. Qubits localized on one side of the device

3. Apply a strong 1-qubit external field to device

4. Qubits now localized on other side of device 
with a quantum circuit applied to the qubits

[Bacon, Crosswhite, Flammia “Adiabatic Quantum Transistors” (2010)
ask me for a copy] 

|ψ� U |ψ�



Questions
• Threshold?

• Hamiltonian which is sum of generators, is it self-
correcting?  (Related to questions about 
“adiabatic quantum transistor.”)

• Other methods for not lowering weight of error 
operators?  Do traditional FT methods work?

• Can we reinterpret topological codes using these 
codes?

• Can we turn any code into 2-local subsystem 
code?
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