
(!aþ bx, for small x), where x ¼ ðpcom % ptÞL1=!0 , with
fitting parameters pt, !0, a, and b.

Figure 3 is the central result in this Letter and shows pt

as a function of ploss. For the points ploss ' 0:4, the uni-
versal scaling law provides a good fit to the simulated
results, so pt is well defined, and !0 ! 1:5 consistent
with the scaling exponent of the RBIM universality class
[15]. A quadratic fit through these points yields a curve that
extrapolates through ð0:5; 0Þ. This curve represents the
boundary of correctability: If ðploss; pcomÞ is in the shaded
region, then the failure rate decreases to zero as L in-
creases. Importantly, this boundary passes through the
known bounds at ploss ¼ 0 and 0.5, demonstrating that
the protocol is very robust against loss.

For ploss ( 0:425, the universal scaling assumption
breaks down (best fits for pt are still shown), and the points
in Fig. 3 lie below the quadratic extrapolation [but still
attaining the point ð0:5; 0Þ]. This is attributed to the fact
that, for ploss ( 0:425, the largest superplaquette on an
L ' 32) 32 lattice occupies approximately half of the
lattice sites [21], so finite size effects dominate.

The protocol described in this Letter for dealing with
losses in a surface code relies on several important prop-
erties of the stabilizers. First, if a physical qubit q in the
logical qubit operator chain !Zi is lost, then there is a
plaquette Pq, such that ~Zi¼ !ZiPq is independent of q (like-
wise !Xi ! ~Xi). Thus, logical operator chains can be re-
routed around the lost site. Second, there is another pla-
quette P0

q such that the superplaquette P
0
qPq is independent

of q. Thus, superplaquettes may be constructed to locate
the end points of error chains (likewise for superstars).
Third, newly formed junk qubits are uncorrelated with
the logical qubits.

These properties are satisfied by a number of related
protocols, including the fault-tolerant planar code [15,16],
long-range entanglement creation in a noisy system [22],
and in Raussendorf’s topological, fault-tolerant, cluster-
state quantum computation scheme [7], each of which
have a computational error threshold of about 0.029. In

these protocols, the syndrome operators exhibit simple
cubic symmetry, whose bond percolation threshold is
psc ! 0:249 [14]. We therefore expect that the region of
correctability for these schemes includes the points
ðploss; pcomÞ ¼ ð0; 0:029Þ and ð0:249; 0Þ.
We have demonstrated that surface codes are robust to

noise arising from both errors and losses. The correctable
phase in ðploss; pcomÞ space includes the known results, and
we have shown that, for a model of uncorrelated noise,
there is a significant fraction of parameter space in which
the surface code is robust to both loss and computational
errors. The approach described here is applicable to other
systems, including full, fault-tolerant quantum computa-
tion, as well as correlated noise models.
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FIG. 3 (color online). Correctability phase diagram. The
shaded region is correctable in the limit L ! 1. The threshold
pt is calculated by fitting the universal scaling law pfail ¼
f½ðpcom % ptÞL1=!0 +. The curve is a quadratic fit to the points
for which ploss ' 0:4 (where universal scaling is unaffected by
the finite lattice size). It extrapolates through ðploss; ptÞ ¼
ð0:5; 0Þ.
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