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In this talk

• I’ll try to convince you that Bell inequalities 
and measurement-based quantum 
computation are related...

• ...in ways which are “trivial but interesting”.

random 
setting

random 
setting

vs

MBQC Bell Inequalities



Talk outline
• A (MBQC-inspired) very simple derivation / 

characterisation of CHSH-type Bell inequalities and 
loopholes.

• Understand post-selection loopholes.

• Develop methods of post-selection without 
loopholes. 

• Applications:

• Bell inequalities for Measurement-based Quantum 
Computing.

• Implications for the range of CHSH quantum 
correlations.



Bell inequalities



Bell inequalities
• Bell inequalities (BIs) express bounds on the statistics of 

spatially separated measurements in local hidden variable 
(LHV) theories.

random 
setting

random 
setting

> ct



Bell inequalities

random 
setting

A choice of different measurements 
chosen “at random”.

A number of different outcomes



Bell inequalities
• They repeat their experiment many times, and compute 

statistics.

• In a local hidden variable (LHV) universe, their statistics are 
constrained by Bell inequalities.

• In a quantum universe, the BIs can be violated.



CHSH inequality
In this talk, we will only consider the simplest type of Bell 
experiment (Clauser-Horne-Shimony-Holt).
Each measurement has 2 settings and 2 outcomes.



Boxes

sj ∈ {0, 1}

mj ∈ {0, 1}

We will illustrate measurements as “boxes”.

In the 2 setting, 2 outcome case 
we can use bit values 0/1 to 
label settings and outcomes.



Local realism
• Realism: Measurement outcome 

depends deterministically on setting 
and hidden variables λ. 

• You can think of λ as a long list of 
values, or as a stochastic variable 
(shared randomness). 

• Locality:  Outcome does not depend 
on the settings of the other 
measurement.

λ λ

• No other restrictions are made on the “boxes”, we want 
the “worst case scenario”. 



CHSH inequality

• In the classical CHSH inequality, we study the statistics of the 
parity of the measurement outcomes via the quantity:

Es1,s2 = p(m1 ⊕m2 = 0|s1, s2)− p(m1 ⊕m2 = 1|s1, s2)

s1 ∈ {0, 1}

m1 ∈ {0, 1}

s2 ∈ {0, 1}

m2 ∈ {0, 1}

same oppositeDepends on 
measurement settings



CHSH inequality
• The range of correlations depends on underlying theory:

E0,0 + E0,1 + E1,0 − E1,1 ≤ 2
√

2

B. S. Tsirelson, Lett. Math. Phys. (1980). S. Popescu and D. Rohrlich, Found. Phys. (1994)

E0,0 + E0,1 + E1,0 − E1,1 = 4

E0,0 + E0,1 + E1,0 − E1,1 ≤ 2

LHV (classical) - The CHSH inequality

Quantum

General non-signalling theory (PR Box)



CHSH inequality
• The range of correlations depends on underlying theory:

B. S. Tsirelson, Lett. Math. Phys. (1980). S. Popescu and D. Rohrlich, Found. Phys. (1994)

LHV (classical) - The CHSH inequality

Quantum

General non-signalling theory (PR Box)

|E0,0 ± E0,1| + |E1,0 ∓ E1,1| ≤ 2

|E0,0 ± E0,1| + |E1,0 ∓ E1,1| ≤ 2
√

2

|E0,0 ± E0,1| + |E1,0 ∓ E1,1| ≤ 4



GHZ paradox

(uniquely) satisfies:

X ⊗X ⊗X|ψ� = |ψ�
X ⊗ Y ⊗ Y |ψ� = |ψ�
Y ⊗X ⊗ Y |ψ� = |ψ�

|ψ� = |001� + |110�

which also imply:

Y ⊗ Y ⊗X|ψ� = −|ψ�

GHZ “Paradox”: No real number assignment of X and  Y 
can satisfy all these equations.

 Correlations
in outcomes of 

local 
measurements}

N. D. Mermin (1990), building on Greenberger, et al. (1989)



• In the binary box notation these correlations can be 
expressed in a very clean way.

• This looks a bit like a computation.

GHZ paradox

s1 s2

m1 m2 m3

m1 ⊕m2 ⊕m3 = s1s2

s1 ⊕ s2



Geometric approach to 
Bell inequalities



• Rather than describing the correlation in terms of       it is 
convenient to switch to the equivalent picture of conditional 
probabilities.

Geometric interpretation of BIs

Es

Es1,s2 = p(m1 ⊕m2 = 0|s1, s2)− p(m1 ⊕m2 = 1|s1, s2)

= 1− 2p(m1 ⊕m2 = 1|s1, s2)

Probability that outputs have odd parity 
conditional on input settings s



•  These conditional probabilities can be combined to form a real 
vector.

• Each possible set of conditional probabilities is represented a 
point in a unit hypercube. 

�p =





p(0, 0)
p(0, 1)
p(1, 0)
p(1, 1)





Geometric interpretation of BIs

0,0,0,0

1,1,1,1
p(s1, s2) ≡ p(m1 ⊕m2 = 1|s1, s2)

conditional
probability

space



LHV Polytope
• In a local hidden variable model, we assume:

• Outputs depend deterministically on the settings 
and the shared hidden variable λ.

• Thus for a given value of λ

• Treating λ stochastically,

p(s) = f(λ, s)

p(s) =
�

λ

p(λ)f(λ, s)

Convex combination

Convex hull



LHV Polytope
• This means that all LHV correlations inhabit the 

convex hull of the fixed-λ correlations.

• Such a shape is
called a polytope.

• It represents all
Bell inequalities
for that setup.

Vertex 
= Deterministic 

correlation
Convex Hull

Facet 
= Bell inequality



Quantum correlations violate Bell inequalities, but do not 
span the whole of correlation space.

Quantum
region

LHV region:
“Bell polytope”

PR Box

Marcel Froissart:  Nouvo Cimento (1981), B.S. Tsirelson, J. Sov. Math. (1987) 

LHV vs Quantum Regions

MAybe talk about 
derivation of quantum 
region - a hot topic



Current hot topic:  Why is the quantum region the shape it is?

LHV vs Quantum Regions

• No-signalling? (Popescu-
Rohrlich)

• Information causality.

• Communication complexity.

• Uncertainty principle?

Varying degrees of success, 
although mostly only the bi-
partite setting is investigated.



Geometric interpretation of BIs
• The LHV polytope for the CHSH experiment was first 

derived by Froissart in 1981.

• The polytope a hyper-octahedron. The facets represent the 
CHSH inequalities (and normalisation conditions).



Many-party Bell 
inequalities



Many-party Bell-inequalities
• Werner and Wolf (2001) generalised the CHSH setting to n-

parties.

• They keep 2-settings, 2-outputs per measurement and 
consider conditional probs for the parity of all outputs.

• They showed that the full n-party Bell polytope - for any n, 
is a hyper-octahedron in 2^n dimensions.

s1 s2

m1 m2

sn

mn

· · ·



A simple characterisation of 
LHV correlations



Changing the lens

• A conditional probability

• is a map from a bit string

• to a probability distribution

s1 s2

m1 m2

sn

mn

· · ·
M =

�

j

mj

p(M = 1|s)

s



Changing the lens

• A stochastic Boolean map

• is a map from a bit string

• to a probability distribution

s1 s2

m1 m2

sn

mn

· · ·
M =

�

j

mj

p(M = 1|s)

s



Changing the lens

• We can think of this as a
computation.

• The structure is (a bit!) reminiscent of 
measurement-based quantum computation.

s1 s2

m1 m2

sn

mn

· · ·
M =

�

j

mj

Input

Output



LHV region

• Standard approach to deriving Bell inequality 
region:

•What conditional probabilities can we achieve 
under LHV?

• This approach:

•What stochastic maps (computations) can we 
achieve under LHV?



LHV Polytope
• We said, in the LHV model, outcomes depend 

deterministically on s and λ, 

and these probabilities form the vertices of the polytope.

• If these outcomes are deterministic, given λ and s,

• i.e. f(λ,s) is a Boolean function.

• To characterise the polytope, we only need to 
characterise these functions.

p(s) = f(λ, s)

p(s) = f(λ, s) ∈ {0, 1}



Boolean functions

• A Boolean function maps n bits to 1 bit.

• Any Boolean function can be expressed as a 
polynomial.

• The linear Boolean functions are degree 1;

• In other words they are just bit-wise sums, 
(parity, XOR).

f(�s) =
n�

j=1

ajsj ⊕ a0



What do we find?

• For the CHSH experiment, the functions are easy 
to characterise.

•  In this case, the LHV region is simply:

• This statement defines a 4^n facet polytope. 
(A mathematically equivalent polytope was 
derived by Werner and Wolf.)

M(�s) =
�

j

bjsj ⊕ a

• the convex hull of all linear functions on s.



Why this shouldn’t be surprising
• It is well known in QIP that CHSH inequality, GHZ 

paradox, Popescu Rohrlich non-local box 

• can all be cast as a computational XOR game 
where the goal is to non-locally compute the 
AND-function on input settings.

See e.g. Cleve, Hoyer, Toner and Watrous (2004), 
Anders and Browne (2009)

s1 s2

m1 m2

m1 ⊕m2 = s1s2

Goal:



What this explains
• It is well known in QIP that CHSH inequality, GHZ 

paradox, Popescu Rohrlich non-local box 

• can all be cast as a computational XOR game 
where the goal is to non-locally compute the 
AND-function on input settings.

See e.g. Cleve, Hoyer, Toner and Watrous (2004), 
Anders and Browne (2009)

s1 s2

m1 m2

m1 ⊕m2 = s1s2

Goal:



What else this explains
• GHZ paradox can be generalised. Every non-linear 

function, generates a family of GHZ-like paradoxes.

Anders and Browne (2009), Raussendorf (2010), 
Hoban, et al (2010)

s1 s2

m1 m2 m3

m1 ⊕m2 ⊕m3 = s1s2

s1 + s2



Simple derivation of the LHV region

• We need to identify deterministic maps and then take the 
convex hull (i.e. allow LHVs to be randomly correlated.)

• First let us consider a single box.

• Due to locality and 
independence of measurements,
mj can only depend on sj and 
the local hidden variables.

• The most general deterministic relationships between output 
and input can be written:

• I.e. there are only 4 1-bit to 1-bit functions - all linear.

• aj and bj depend only on the LHV λ.

sj

mj

aj ∈ {0, 1} bj ∈ {0, 1}mj = aj + bjmj

Proof sketch



Simple derivation of the LHV region

• Now, we consider the output of many such boxes, and 
consider their parity, whose statistics we are studying.

s1 s2

m1 m2

sn

mn

· · ·

M(�s) =
�

j

bjsj ⊕ a

M =
�

j

mj =
�

j

aj ⊕
�

j

bjsj

All linear 
functions on s



What do we do with this?

• Standard approach: 

• Compute facets of the polytope (4^n tight Bell inequalities - e.g. 
experimental non-locality tests). 
Straightforward, but inefficient 

• Alternative approach:

• Remain in a vertex picture and use the simple characterisation to 
prove some general results without the need for computing facets.

• Particularly good for studying loopholes and post-selection.

Hyper-octahedron

Werner-Wolf-
Zuchowski-Brukner (2000) Us (2010)

Linear functions



Loopholes in 
Bell inequality Experiments



Loopholes in Bell Inequality experiments

• The beauty of Bell inequalities is that they are 
experimentally testable.

• However, Bell’s assumptions are strict.

• Space-like separated measurements

• Perfect detection efficiency

• Measurement settings chosen at random (free-will).

• If these do not hold, then an apparent BI violation 
may be explainable via a LHV theory.

• In other word -  there may be loopholes.



Loopholes in Bell Inequality experiments

Allowed LHV 
correlations 
under Bell’s 
assumptions

Loopholes make the LHV region larger.

Allowed LHV 
correlations 
under actual 
experimental 
conditions



Loopholes

• Since LHV region corresponds to linear functions, 
loopholes can only arise when there is a mechanism to 
compute non-linear functions.

Convex sum 
contains

a non-linear 
function!



Loopholes
• E.g. Locality Loophole

• If one measurement site “learns” the value of 
any other input it has the capability to 
output a non-linear function.

s1 s2

s1, s2



Loopholes
• E.g. Detector Loophole

• Garg, Mermin (1987): LHV models can fake 
inefficient detectors of efficiency η while 
violating Bell inequalities up to the bound:

s1 s2

“Click” “Fail”

E0,0 + E0,1 + E1,0 − E1,1 ≤
4
η
− 2



Loopholes
• E.g. Detector Loophole

• Due to the need to post-select the data where both detectors fire.

• Post-selection can renormalise the statistics  - “boosting” certain 
conditional probabilities relative to each other.

• Here we can give an explicit and simple model of how post-
selection can introduce a non-linearity.

s1 s2

“Click” “Fail”



Post-selection loopholes:  A toy example

s1 s2

c c

Consider the following LHV correlation. Bit c is a random variable 
shared by the boxes.

m2 = cs2m1 = s1 ⊕ c⊕ 1

Now we post-select on           .m1 = 1

This implies           and hence                . c = s1 m2 = s1s2

Non-linear! Loophole!



Example:  A post-selection loophole
• What is the source of non-linearity?

• Post-selection allows the hidden variable c to “learn” the 
value of s1.

• It is only the lack of knowledge of other inputs which 
restricted us to linear functions before.

• Post-selection can correlate inputs s with LHVs and the 
LHVs (shared by all parties) act as a broadcast channel.

s1 s2

c c

m2 = cs2c = s1



The detector loophole
• The detector loophole can be understood via a similar model.

• We model an imperfect detector as a box with 2 outputs.  

• The second output dj will now determine whether the 
detector fires (1) or not (0).

• The first output mj represents the output of the detector in 
the event that it fires.

s1 s2

d1 d2m2m1

click?output click?output



The detector loophole

•We now post-select on d1 = 1. 

• Assuming c is unbiased, we get a “click” half of the time.

• The output of detector 2 (which always clicks) equals s1s2.

s1 s2

m1

c

m2 = cs2 d2 = 1d1 = c⊕ s1 ⊕ 1

c



The detector loophole

• Adding shared unbiased bit r, we recover the statistics 
of the Popescu-Rohrlich non-local box.

• Via a further shared unbiased bit, we can symmetrise. 

•Half the time: Above strategy
Half the time: Mirror-flipped strategy

s1 s2

c

d2 = 1d1 = c⊕ s1 ⊕ 1 m2 = cs2 ⊕ rm1 = r

r c r



The detector loophole
• We need one final step to “fake” inefficient quantum detectors.

• In symmetrised strategy:

• Quantum detectors fail independently. i.e. we need:

• Solution: Add correlated fail outcomes.

• Can then fake independent detectors with efficiency 2/3 and 
perfectly simulate a non-local box.

p(click) = 3/4

p(click,click) = 1/2

p(click,click) = p(click)^2



The detector loophole

E0,0 + E0,1 + E1,0 − E1,1 ≤
4
η
− 2

• Garg and Mermin

• The model saturates Garg and Mermin’s inequality for η = 2/3.

• By modifying the strategy, we can boost the faked efficiency at 
the cost of lower Bell inequality violation.

• That model then saturates G & M’s inequality for all η.



Avoiding post-selection loopholes

• Can we post-select without creating loopholes?

• Post-selection can enable non-linear maps in only two 
ways

• The post-selection itself induces an explict non-
linear relationship between input bits and output.

• Post-selection correlates input bits and LHVs.

s1 s2

cc



Post-selection is universal
•We post-select in every Bell inequality 

experiment!

• Let x label the particular conditional probability 
we want to calculate. Then we post-select on 
data satisfying s = x .

s1 m2 m1 m2

0 1 1 0
1 1 0 1
1 1 1 1
0 0 0 0
0 1 0 0



Post-selection is universal
• E.g. Setting x = 01

• To compute                              we post-
select on data where s = 01.

s1 m2 m1 m2

0 1 1 0
1 1 0 1
1 1 1 1
0 0 0 0
0 1 0 0

p(
�

j

mj = 1|s = 01)



Post-selection is universal

•We make this distinction since

• s is an unbiased random string

• x is not

•We can use this observation to post-select 
in a non-trivial way without introducing 
loopholes.



Loophole-free post-selection
• For example, we can post-select such that 

each setting bit sj depends linearly on the bits 
of x.

• This is equivalent linear 
pre-computation on x.

• Via our earlier argument, the parity of outputs 
inhabits convex hull of functions linear in x.

sj = fj(x)

m1 m2 mn

· · ·
linear pre-computation

x

where fj is linear in x.



Loophole-free post-selection

• This isn’t really new. In fact, this is the type of 
post-selection you’d do in a GHZ experiment.

•Note also, such post-selection reduces the 
dimension of the linear polytope from 2^|s|-bits 
to 2^|x|.

m1 m2 m3

x1 ⊕ x2x2x1



Loophole-free post-selection
• More interestingly, we can introduce post-selection 

on settings and outputs.

where fj and gj are linear functions.

• This looks dangerous. We know that measurement 
bits can act as a conduit to map information onto 
the shared LHVs.

• Surprisingly, after such post-selection, the parity of 
output bits remains linear. No loophole is induced.

sj = fj(x)⊕ gj(m)



Loophole-free post-selection
• The intuition of why this post-selection induces 

no loopholes is the following:

• sj is an unbiased bit. It thus acts as a “pad” 
preventing the measurement bits from 
“learning” any information about x.

• It doesn’t matter whether the sj’s are 
correlated, only that their marginals are 
unbiased.

sj = fj(x)⊕ gj(m)



Loophole-free post-selection

• This type of post-selection can “simulate” an 
adaptive measurement. 

• E.g

• Provided that adaptivity is linear, e.g. settings 
depend only linearly on other measurement 
outcomes.

s1 = x1 s2 = x2 ⊕m1



Bell tests vs MQBC



Measurement-based quantum computation

Measure a sub-set of 
qubits

Process measurement 
results

Choose bases for 
next subset of 
measurements 

Computational Output

Prepare entangled 
resource state
e.g. cluster state

Measurements are adaptive



 Bell Tests vs MBQC 

• Bell test

• Single-site measurements

• Random settings, 
space-like separated

• on an Entangled State

• to achieve a Non-classical 
Correlation 

• and hence refute Local Hidden 
Variable (LHV) Theories

random 
setting

random 
setting



 Bell Tests vs MBQC 

• Measurement-based 
Quantum Computing

• Single-site measurements

• Adaptive

• on an Entangled State

• to achieve a Non-Classical 
Computation



 Bell Tests vs MBQC 

random 
setting

random 
setting

vs

• Adaptive vs • Random settings, 
space-like separated



Measurement-based quantum computation

In Raussendorf and Briegel’s cluster state MBQC, 
adaptivity is linear!

Every measurement setting is a linear function of 
previous measurement outcomes.

m1 m2 m3 m4

m1 m2 m1 ⊕m3



Bell inequalities for MBQC?

• This means that with loophole-free post-
selection, we can simulate the MBQC-type 
correlations in a Bell-type experiment.

•MBQC and BI violations have a similar foundation.

m1 m2 m3 m4

m1 m2 m1 ⊕m3



Adaptivity in MBQC
•We believe that adaptive measurement is 

required in MBQC to achieve universality.

•With simultaneous measurements we can 
only achieve circuits of the form:

• This is closely related to Bremner and 
Shepherd’s IQP model.

• This model is not universal.

Clifford Diagonal Clifford|0�⊗n



A larger quantum region?
•We’d thus expect to achieve 

correlations with linear adaptivity 
impossible without it.

• This implies that the post-
selection, which left the LHV 
region invariant, might increase 
the quantum region.

• Can we show this?

• Yes.
With post-
selection?



A larger quantum region
• Consider the function:

• We can compute f(x) with two AND gates -  using 
the GHZ correlation twice using linear adaptivity.

m1 m2 m3

x1 x2 x1 ⊕ x2

m1 ⊕m2 ⊕m3 = x1x2

f(x) = x1x2x3



A larger quantum region

Using methods adapted from Werner and Wolf we can 
show that this lies outside the standard quantum region.

CHSH correlation space

Non-post selected 
quantum region

f(x) = x1x2x3

Post selected 
quantum region



Summary
• In CHSH experiments, LHV region is characterised 

by the set of linear functions on the input settings.

• Hence, loopholes = source of non-linearity.

• We can post-select in a non-trivial way without 
introducing a loophole.

• Post-selection simulates the adaptivity structure of 
Raussendorf and Briegel MBQC.

• We see a concrete connection between Bell 
inequality violation and (quantum) computation.

• Loophole-free post-selection can enlarge the region 
of quantum correlations.



Outlook and Open Questions
• Better characterisation of linearly adaptive quantum region?

• Consider more general correlations (i.e. than just CHSH-
parity)? Other “quantum games”?

• Study other detection loopholes (E.g. Eberhard’s analysis).

• Our methods generalise to higher dimensions,  though the 
post-selection result fails. Is there a “safe” form of post-
selection in higher d? Consider high-d cluster state 
computation?

• Are there implications for attempts to axiomatise quantum 
correlations (currently good for bi-partite case only). Which 
region should one axiomatise?

• Use MBQC correspondence for quantum circuit bounds? E.g. 
Heuristics for IQP vs BQP?
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