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Aims of the talk

. quantum computation, harnessing many-body correlation of
a 2D condensed matter system.

measurement-based quantum computation (MQC):
entanglement is consumed to build up complexity via
measurements

. ubiquitous usefulness as a computational resource in
an entire phase (valence bond solid phase).

- renormalization of many-body correlations
- quantum computational matter



Aim

Perspective to intrinsic complexu’ry of 2D quan‘rum systems
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Measurement-based quantum computation 2

universal QC model by

 single-particle measurements
« communication of outcomes

information flow
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which enables one to simulate
universal quantum computation

(BQP)?

[MQC on a 2D cluster state:
Raussendorf & Briegel, PRL '01;
Raussendorf, Browne, Briegel, PRA '03 ]

 practical implementation?
(large-scale entanglement)
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measured correlation may give a unitary map
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How does MQC look like?

microscopic information processing machine for our real world

scattering matrix

standard basis: xJ* y
complementary basis: xc% y ¢



2D valence bond solid (VBS) phase

natural resource(?): a preparation by cooling
stability of a gapped ground state
quantum antiferromagnet of spin 3/2's on 2D hexagonal lattice
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2D AKLT ground state: VBS construction

. ® singlet of virtual two spin 3's ]
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g> —( :unique gs.
[cf. optimal g.s. approach by Klimper et al.]

Schwinger boson method (total # bosons per site is 3)
[Arovas, Auerbach, Haldane'88; AKLT'88; Kirillov, Korepin,'89]
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what is a physical entity of 0?2 and 12 ?

localized collective mode at boundary

¢ =1/In(3/2) = 2.47

e area law of entanglement
[Katsura et al. 2010]

- degeneracy in gapped ground states
(cf. topological feature)

- ubiquitous in the VBS phase
1D SU(}\Zr)-iinvarian’r spin-1 chain
H=J) [Sk-Sk+1— B(Sk - Skt1)’]
k=1
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Challenge to construct MQC Protocol

- entanglement network to gate-teleport quantum information
[Gottesman, Chuang, Nature'99]

‘ [Raussendorf, Briegel, PRL'O1]
cluster-state has a VBS-like [Verstraete, Cirac, PRA'04]

entanglement structure (PEPS) [Childs, Leung, Nielsen PRA'05]
[Gross, Eisert, PRL'O7;

Gross, Eisert, Schuch, Perez-
Garcia, PRA'07] ...

* steering quantum information in a controllable (quantum-
circuit) manner

1+1D quantum circuit 3-WC(Y symmeTr‘ic l
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How to get unitary maps? How to distinguish space and time?




Outline of MQC Protocol

How to get unitary maps and composed them?

1. measurement at every site, \:(/ ~"branching-out

depolarizing randomly into ma{t@h@'d f@@ﬂﬂ@S

one of the three axes
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in a typical configuration of matched bonds identifying a
backbone (which excludes all sites with ’rrlple matched bonds)

2. deterministic quantum computation



Ideas behind MQC Protocol

How to get unitary maps and composed them?
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« "concentration” from 2D (3-way symmetric) correlation
= classical statistical correlation (via random sampling)
+ "more rigid” quantum correlation



Unitary logical gates

\f abond is not matched, one site of the pair can be used in the backbone

backbone site: U=2Z non-backbone site: V=1x, = %x
standard basis: x4
AT[37]=10°)(1%| ® (17]0%) = —5[0%)(17],
AT[-57] = |1*)(0°| ® (0°]07) = Z5|1%)(07|.

)} complementary basis: Z<%




1-qubit gates
Euler angles: SU(2) = R?(0,)R*(6,)R*(6,)

RH(6) = [0#)(0#] 4 e'[1#)(1#]
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branching-out matched bonds

>

X, T3
f  backbone site is matched fo ts immediate non-backbane site

Measure all sites connected by matched bonds
in a complementary basis

backbone site: 11 =x

branching-out part: TR’C(O)‘O / 12>

They can be a standard (z)-complementary (x) pair, as far as
no site with triple matched bonds is attached to the backbonel




2-qubit gate: Controlled NOT

At[3]=|0*)(1*| ® (1*|
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Emergence of space and time

2-bit of classical information 7 a® e
: e = ~L|V T
per backbone site: T = Xa°Za ik b c 1
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space-like:

no adaptation because of
“identity only" in between




Emergence of space and time

standard basis: x4* y J z‘t‘/f

complementary basis: x<% y ¢
| i i i
classical information TWO bits sent in the same direction

at backbone site: two bits sent in opposite directions
T — xa© gza (no net asymmetry in directions)




Identification of the backbone
a classical problem: can we circumvent sites with triple matched bonds ?
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infuition: it should be easier than avoiding all matched bonds.




approximation by bond percolation model

{M*,MY,M~*} each probability 1/3 per site \/\K S

matched bond: [t = figs N ) ]\(

macroscopically analogous to bond percolation with p = 2/3
[cf. 2D hexagonal threshold: p. =1—2sin({5) = 0.652...]

N Y \/\[bmm[hnﬂmg -out
\)i maﬁt@]}n@@l bonds

A

| ; ( bmﬂgﬂv@m |

10=4x¢&

e 5; \
N o constant

' \Mﬁ" [immits™ k
I __matehed bonds. overhead




Aim *

Does quantum computational capability (observed in the
AKLT state) persist in an entire valence bond solid phase?

cf: cluster state is singular?
its epsilon neighborhood with epsilon ~ 0.01 is only available
by fault-tolerance application



Persistence of computational capability
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Two possible solutions 1

quantum computational renormalization
[Bartlett, Brennen, AM, Renes, PRL 105, 110502 (2010)]
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(b) CERe=e=meTmeT=e==s ’+®4 single—spin
' h } ‘; measurements only

[compare CORE-DMRG]

................... probabilistic nature of
e e — buffering is compensated
0.1 A S by a physical overhead
in length




Two possible solutions 2

adiabatic evolution by control of boundary Hamiltonian

[AM, PRL 105, 040501 (2010)]
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increasing during
H(j;t)= (1 — c(t))hj,j+1 +H(j+1) a constant period T

J

entanglement persists by a property of (symmetry-protected)
topological order

boundary correlation of 1D VBS
phase is "renormalized” to that of
the AKLT (frustration-free) point

holographic nature



2D counterpart?
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2. such a computational capability may persist in an entire
phase (valence bond solid phase).

renormalization of many-body correlation (o encode logical
information in common low-energy/macroscopic physics)

computational usefulness as the characteristic of a certain
phase ("quantum computational phase")



Summary and outlook

1. quantum computational capability is available in
a 2D condensed matter system.

new perspective to an intrinsic complexity of 2D systems

2. such a computational capability may persist in an entire
phase.

possible realization of a quantum computer without much
fine engineering of microscopic parameters.

> A. Miyake, quantum computational capability of
a two-dimensional valence bond solid phase,
arXiv:1009.3491

Special thanks to S. Bartlett, G. Brennen, J. Renes



