"Quantum Many-body Information" Workshop, Jan. 17 (2011)

Quantum computational capability of a two-dimensional valence bond solid phase

Akimasa Miyake

¹Perimeter Institute for Theoretical Physics, Canada

Aims of the talk

1. quantum computation, harnessing many-body correlation of a 2D condensed matter system.

measurement-based quantum computation (MQC): entanglement is consumed to build up complexity via measurements

- 2. ubiquitous usefulness as a computational resource in an entire phase (valence bond solid phase).
 - renormalization of many-body correlations
 - quantum computational matter

Aim

Perspective to intrinsic complexity of 2D quantum systems

$$|\Psi\rangle = \sum_{\alpha} \operatorname{tr}\left[\prod_{k}^{\operatorname{vertex}} A[\alpha_{k}] |\alpha_{k}\rangle\right]$$

$$\frac{\left< \Psi \right| O \left| \Psi \right>}{\left< \Psi \right| \Psi \right>}$$

$$\left< 0^z \dots 0^z \left| U^{\dagger} S_1 U \right| 0^z \dots 0^z \right>$$

classical 2D statistical (vertex) model classical variational algorithm for 2D quantum system (cf. DMRG in 1D, ...)

<u>quantum</u> transition magnitude of arbitrary U (quantum computer)

Measurement-based quantum computation 2

universal QC model by

- many-particle entanglement
- single-particle measurements
- communication of outcomes

significant questions

- characterization of entanglement which enables one to simulate universal quantum computation (BQP)?
- practical implementation? (large-scale entanglement)

[MQC on a 2D cluster state: Raussendorf & Briegel, PRL '01; Raussendorf, Browne, Briegel, PRA '03]

measurements: •

in Z direction

in X direction

in X-Y plane

information flow

$$\begin{aligned} & \text{measured correlation may give a unitary map} \\ & |\varphi\rangle = \alpha |+\rangle + \beta |-\rangle |+\rangle |+\rangle |+\rangle \\ & \text{cluster state} \\ & \quad [\text{Briegel, Raussendorf, PRL'01]} \\ & CZ |\varphi\rangle_1 |+\rangle_2 = (\alpha |+\rangle_1 + \beta |-\rangle_1) |0\rangle_2 + (\alpha |-\rangle_1 + \beta |+\rangle_1) |1\rangle_2 \\ & = |+\rangle_1 (H |\varphi\rangle) + |-\rangle_1 (XH |\varphi\rangle) \\ & = |+, \eta\rangle_1 \Big(H \Big[\begin{array}{c} 1 \\ e^{-i\eta} \end{array} \Big] |\varphi\rangle \Big)_2 + |-, \eta\rangle_1 \Big(XH \Big[\begin{array}{c} 1 \\ e^{-i\eta} \end{array} \Big] |\varphi\rangle \Big)_2 \\ & R_z(\eta) \text{ rotation around z axis} \\ & |\pm, \eta\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm e^{i\eta} |1\rangle) \\ & \sigma(\eta) = \cos \eta \, \sigma_x + \sin \eta \, \sigma_y \end{aligned} \\ & |Cl\rangle = \sum_{\alpha_1, \dots, \alpha_N = \pm} \text{tr} \Big[M[\alpha_N] \cdots M[\alpha_1] \Big] |\alpha_1 \dots \alpha_N \rangle \\ & M[+] = H = \frac{1}{\sqrt{2}} \Big(\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array} \Big), \quad M[-] = XH \\ & \text{single-site quantum} \\ & \text{measurement} \\ & \text{allows tensors to tilt!} \end{aligned}$$

How does MQC look like?

microscopic information processing machine for our real world

scattering matrix

2D valence bond solid (VBS) phase

natural resource(?): a preparation by cooling stability of a gapped ground state quantum antiferromagnet of <u>spin 3/2</u>'s on 2D hexagonal lattice

2D AKLT ground state: VBS construction

• singlet of virtual two spin
$$\frac{1}{2}$$
's $\frac{1}{\sqrt{2}}(|1^z\rangle \otimes |0^z\rangle - |0^z\rangle \otimes |1^z\rangle)$

site: mapping to su(2) irrep (spin 3/2)

antisymmetric tensor per bond, followed by symmetrization per site

$$P_{i,i+1}^{3} |g\rangle = 0$$
 : unique g.s.
[cf. optimal g.s. approach by Klümper et al.]

Schwinger boson method (total # bosons per site is 3) [Arovas, Auerbach, Haldane'88; AKLT'88; Kirillov, Korepin,'89]

$$\left|\mathcal{G}\right\rangle = \sum_{\alpha_{k},\alpha_{k'}} \operatorname{tr}\left[B\prod_{k\in \top} A_{\top}[\alpha_{k}] \left|\alpha_{k}\right\rangle \prod_{k'\in \bot} A_{\bot}[\alpha_{k'}] \left|\alpha_{k'}\right\rangle\right]$$

 $\frac{1}{2}^{\otimes 2}$

$$\begin{array}{c} \underbrace{\text{tensors}} \\ \bullet & \frac{1}{\sqrt{2}} (|1^z\rangle \otimes |0^z\rangle - |0^z\rangle \otimes |1^z\rangle) \\ \bullet & \bullet & \frac{1}{\sqrt{2}} (|1^z\rangle \otimes |0^z\rangle - |0^z\rangle \otimes |1^z\rangle) \\ \bullet & \bullet & \bullet & \frac{1}{\sqrt{2}} (|1^z\rangle \otimes |0^z\rangle - |0^z\rangle \otimes |1^z\rangle) \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \text{'symmetrization followed by left-side action ZX''} \\ & \left| \mathcal{G} \right\rangle = \sum_{\alpha_k, \alpha_{k'}} \operatorname{tr} \left[B \prod_{k \in \mathbb{T}} A_{\mathbb{T}}[\alpha_k] |\alpha_k\rangle \prod_{k' \in \mathbb{L}} A_{\mathbb{L}}[\alpha_{k'}] |\alpha_{k'}\rangle \right] \\ & A[\pm \frac{3}{2}^{\mu}] \sim 000^{\mu} \\ & A[\pm \frac{1}{2}^{\mu}] \sim \frac{1}{\sqrt{3}} (001 + 010 + 100^{\mu}) \\ & A_{\mathbb{T}}[\alpha^x] = A_{\mathbb{T}}[\alpha^z]|_{z \mapsto x}, \quad A_{\mathbb{L}}[\alpha^x] = -A_{\mathbb{L}}[\alpha^z]|_{z \mapsto x}, \\ A_{\mathbb{T}}[\frac{3}{2} \quad A_{\mathbb{T}}[\alpha^y] = -iA_{\mathbb{T}}[\alpha^z]|_{z \mapsto y}, \quad A_{\mathbb{L}}[\alpha^y] = A_{\mathbb{L}}[\alpha^z]|_{z \mapsto y}, \quad |\otimes |0^z\rangle, \\ A_{\mathbb{T}}[\frac{1}{2}^{-}] = \frac{-}{\sqrt{3}} (|0^z\rangle \langle 1^z| \otimes \langle 0^z| + Z \otimes \langle 1^z| \rangle, \quad A_{\mathbb{L}}[\frac{1}{2}^z] = \frac{1}{\sqrt{3}} (-|0^z\rangle \langle 1^z| \otimes |1^z\rangle + Z \otimes |0^z\rangle), \\ A_{\mathbb{T}}[-\frac{1}{2}^z] = B = \prod_{k} \prod_{i=1}^{k} \sum_{\alpha \in \mathbb{T}^k} \sum_{i=1}^{k} \sum_{\alpha \in \mathbb{T}^k} \sum_{$$

edge states

what is a physical entity of 0^z and 1^z ? localized collective mode at boundary $\xi = 1/\ln(3/2) \approx 2.47$

- area law of entanglement [Katsura et al. 2010]
- degeneracy in gapped ground states (cf. topological feature)
- ubiquitous in the VBS phase 1D SU(2)-invariant spin-1 chain $H = J \sum_{k=1}^{N-1} [\mathbf{S}_k \cdot \mathbf{S}_{k+1} - \beta (\mathbf{S}_k \cdot \mathbf{S}_{k+1})^2]$

Challenge to construct MQC Protocol

entanglement network to gate-teleport quantum information

```
cluster-state has a VBS-like
entanglement structure (PEPS)
```

[Gottesman, Chuang, Nature'99] [Raussendorf, Briegel, PRL'01] [Verstraete, Cirac, PRA'04] [Childs, Leung, Nielsen PRA'05] [Gross, Eisert, PRL'07; Gross, Eisert, Schuch, Perez-Garcia, PRA'07]

 steering quantum information in a controllable (quantumcircuit) manner

How to get unitary maps? How to distinguish space and time?

Outline of MQC Protocol

How to get unitary maps and composed them?

 measurement at every site, depolarizing <u>randomly</u> into one of the three axes

$$\begin{split} \{M^{x}, M^{y}, M^{z}\} \\ M^{\mu} &= \sqrt{\frac{2}{3}} (|\frac{3}{2}^{\mu}\rangle \langle \frac{3}{2}^{\mu}| + |-\frac{3}{2}^{\mu}\rangle \langle -\frac{3}{2}^{\mu}|) \\ \sum_{\mu=x,y,z} M^{\mu\dagger} \dot{M}^{\mu} &= 1 \end{split}$$

matched bond: $\mu_k = \mu_{k'}$

1'. classical side-computation:

in a typical configuration of matched bonds, identifying a backbone (which excludes all sites with triple matched bonds)

2. <u>deterministic</u> quantum computation

Ideas behind MQC Protocol

How to get unitary maps and composed them?

 a (mutually-unbiased) pair of standard and complementary measurements
 <= non-matched bond

• 2 bits of information per site

- "concentration" from 2D (3-way symmetric) correlation
 - = classical statistical correlation (via random sampling)
 - + "more rigid" quantum correlation

Unitary logical gates

if a bond is not matched, one site of the pair can be used in the backbone

backbone site: $\mu = z$ non-backbone site: $v = x, \pm \frac{3}{2}^{x}$ standard basis: $x \uparrow$

$$\tilde{A}_{\top}[\frac{3}{2}^{z}] = |0^{z}\rangle\langle 1^{z}| \otimes \langle 1^{z}|0^{x}\rangle = \frac{1}{\sqrt{2}}|0^{z}\rangle\langle 1^{z}|,$$
$$\tilde{A}_{\top}[-\frac{3}{2}^{z}] = |1^{z}\rangle\langle 0^{z}| \otimes \langle 0^{z}|0^{x}\rangle = \frac{1}{\sqrt{2}}|1^{z}\rangle\langle 0^{z}|.$$

 $\{\frac{1}{\sqrt{2}}(\left\langle \frac{3}{2}^{z}\right| + \left\langle -\frac{3}{2}^{z}\right|), \frac{1}{\sqrt{2}}(-\left\langle \frac{3}{2}^{z}\right| + \left\langle -\frac{3}{2}^{z}\right|)\} \quad \text{complementary basis: } z \triangleleft t$

$$X(=\tilde{A}_{\top}[\frac{3}{2}^{z}] + \tilde{A}_{\top}[-\frac{3}{2}^{z}])$$
$$XZ(=-\tilde{A}_{\top}[\frac{3}{2}^{z}] + \tilde{A}_{\top}[-\frac{3}{2}^{z}])$$

Euler angles: $SU(2) = R^{z}(\theta_{3})R^{x}(\theta_{2})R^{z}(\theta_{1})$ $R^{\mu}(\theta) = |0^{\mu}\rangle\langle 0^{\mu}| + e^{i\theta}|1^{\mu}\rangle\langle 1^{\mu}|$

complementary basis: z = 0 one-parameter freedom: θ

$$\begin{split} \langle \gamma^{z|x}(\theta) | &= \frac{1}{2\sqrt{2}} \left[\left(1 + (-1)^{b} e^{i\theta} \right) \left(\left\langle \frac{3}{2}^{z} \right| + \left\langle -\frac{3}{2}^{z} \right| \right) + \left(1 - (-1)^{b} e^{i\theta} \right) \left(- \left\langle \frac{3}{2}^{z} \right| + \left\langle -\frac{3}{2}^{z} \right| \right) \right] \\ \langle \gamma^{z|y}(\theta) | &= \frac{1}{2\sqrt{2}} \left[\left(1 + (-1)^{b} e^{i\theta} \right) \left(-i\left\langle \frac{3}{2}^{z} \right| + \left\langle -\frac{3}{2}^{z} \right| \right) + \left(1 - (-1)^{b} e^{i\theta} \right) \left(i\left\langle \frac{3}{2}^{z} \right| + \left\langle -\frac{3}{2}^{z} \right| \right) \right] \end{split}$$

$$\sum_{\alpha} \tilde{A}[\alpha] \langle \gamma^{z|\nu}(\theta) | M^z | \alpha \rangle = X Z^{b \oplus c} R^z(\theta)$$

non-backbonebackboneoutcome:outcome: $c \in \{0, 1\}$ $b \in \{0, 1\}$

Pauli byproduct:

 $\Upsilon = XZ^{b \oplus c}$

branching-out matched bonds

if a backbone site is matched to its immediate non-backbone site

Measure all sites connected by matched bonds in a complementary basis

backbone site: $\mu = x$

branching-out part: $\Upsilon R^{x}(0) \left| 0 / 1^{z} \right\rangle$

They can be a standard (z)-complementary (x) pair, as far as no site with <u>triple matched bonds</u> is attached to the backbone!

2-qubit gate: Controlled NOT

a pair of sites that share no matched bond $A_{\top}[\frac{3}{2}^{z}] = |0^{z}\rangle\langle 1^{z}| \otimes \langle 1^{z}|$ $A_{\top}[-\frac{3}{2}^{z}] = |1^{z}\rangle\langle 0^{z}| \otimes \langle 0^{z}|$

$$A_{\perp}[\gamma^{z|x}(0)] = \frac{1}{\sqrt{2}}\Upsilon_{\perp}(\mathbf{1}\otimes\langle 0^{2} | + Z\otimes\langle \mathbf{1}^{2} | \rangle)$$
$$A_{\perp}[\gamma^{x|z}(0)] = \frac{1}{\sqrt{2}}\Upsilon_{\perp}(\mathbf{1}\otimes|0^{z}\rangle + X\otimes|\mathbf{1}^{z}\rangle)$$

CNOT $\left(=\frac{1}{2}\left(1\otimes 1+1\otimes X+Z\otimes 1-Z\otimes X\right)\right)$

Emergence of space and time

μ	a^x	a^z
$\gamma^{x u}$	$b\oplus c$	1
$\gamma^{y \nu}$	$b\oplus c$	$b\oplus c\oplus 1$
$\gamma^{z \nu}$	1	$b\oplus c$

adaptation for determinism

 $(X^{b'\oplus c'}ZR^x(\theta^x))(XZ^{b\oplus c}R^z(\theta^z)) = X^{b'\oplus c'\oplus 1}Z^{b\oplus c\oplus 1}R^x((-1)^{b\oplus c}\theta^x)R^z(\theta^z),$

space-like:

no adaptation because of "identity only" in between

Emergence of space and time

 $\Upsilon = X^{a^x} Z^{a^z}$

(no net asymmetry in directions)

Identification of the backbone

a <u>classical</u> problem: can we circumvent sites with triple matched bonds?

intuition: it should be easier than avoiding all matched bonds.

approximation by bond percolation model

 $\{M^x, M^y, M^z\}$ each probability 1/3 per site

matched bond: $\mu_k = \mu_{k'}$

macroscopically analogous to bond percolation with p = 2/3 [cf. 2D hexagonal threshold: $p_c = 1 - 2\sin(\frac{\pi}{18}) \approx 0.652...$]

Aim +

Does quantum computational capability (observed in the AKLT state) persist in an entire valence bond solid phase?

cf: cluster state is singular? its epsilon neighborhood with epsilon ~ 0.01 is only available by fault-tolerance application

Persistence of computational capability

Analysis in 1D VBS phase

$$|\mathcal{G}(\beta)\rangle$$
, $-1 < \beta < 1$

no known exact description except beta = -1/3 (though the numerical approximation by MPS is possible)

Two possible solutions 1

quantum computational renormalization

[Bartlett, Brennen, AM, Renes, PRL 105, 110502 (2010)]

Two possible solutions 2
adiabatic evolution by control of boundary Hamiltonian

$$[AM, PRL 105, 040501 (2010)]$$

$$H(j) = J \sum_{k=j}^{N-1} [\mathbf{S}_{k} \cdot \mathbf{S}_{k+1} - \beta(\mathbf{S}_{k} \cdot \mathbf{S}_{k+1})^{2}]$$

$$H(j;t) = (1-c(t))h_{j,j+1} + H(j+1)$$

$$c(t) \text{ is monotonically increasing during a constant period } T$$

entanglement persists by a property of (symmetry-protected) topological order

boundary correlation of 1D VBS phase is "renormalized" to that of the AKLT (frustration-free) point

holographic nature

2. such a computational capability may persist in an entire phase (valence bond solid phase).

renormalization of many-body correlation (to encode logical information in common low-energy/macroscopic physics)

computational usefulness as the characteristic of a certain phase ("quantum computational phase")

Summary and outlook

 quantum computational capability is available in a 2D condensed matter system.

new perspective to an intrinsic complexity of 2D systems

2. such a computational capability may persist in an entire phase.

possible realization of a quantum computer without much fine engineering of microscopic parameters.

A. Miyake, quantum computational capability of a two-dimensional valence bond solid phase, arXiv:1009.3491

Special thanks to S. Bartlett, G. Brennen, J. Renes