Quantum Phases for Quantum Computation Renormalization & Symmetry-Protected Topological Order

TECHNISCHE UNIVERSITÄT DARMSTADT

Joseph M. Renes

Stephen D. Bartlett, Gavin K. Brennen, and Akimasa Miyake

PRL 105 110502 (2010) & arXiv:11xx.xxx?

18 January 2011 | Coogee '11 | 1

Motivation State of the Art Computers

Motivation State of the Art Computers

Classical

Intel 6 core processor (Gulftown); $\sim 10^9 \ transistors$

Motivation State of the Art Computers

Classical

Intel 6 core processor (Gulftown); $\sim 10^9 \ transistors$

NIST Racetrack ion trap; \sim 100 ions (?)

Trouble: noise and reliability

Trouble: noise and reliability

No problem: use error correction!

Can we solve this problem in hardware?

Can we solve this problem in hardware?

Classical solution

Can we solve this problem in hardware?

Classical solution

?

Quantum solution

Can we solve this problem in hardware?

Classical solution

Quantum solution Perhaps some exotic quantum phase of matter? Anyons? (graphene FQHE, Andrei group Rutgers)

Can we solve this problem in hardware?

Ambitious (Intel 4004, 1972)

Quantum solution Perhaps some exotic quantum phase of matter? Anyons? (graphene FQHE, Andrei group Rutgers)

Is there something a little easier to build?

Yes!

The Haldane phase of spin-1 chains offers several interesting ideas:

- MBQC renormalization
- Holonomic QC from symmetry-protected topological order

Quantum computational renormalization in the Haldane phase

First, the short version

- Can define MBQC model at the AKLT point, in the Haldane phase
- Gate fidelities decay as we move away from AKLT
- But there's an RG flow towards AKLT, so just measure the block spins!

Quantum computational renormalization in the Haldane phase

First, the short version

- Can define MBQC model at the AKLT point, in the Haldane phase
- Gate fidelities decay as we move away from AKLT
- But there's an RG flow towards AKLT, so just measure the block spins!
- That would require multispin measurements, so you could do QC anyway
- Simulate block measurements with single-site measurement & postselection!
- QC ability is a property of the phase, in this sense

AKLT spin-chain

Affleck-Kennedy-Lieb-Tasaki nearest-neighbor Hamiltonian

- ▶ Ground state is unique $\frac{\text{periodic BCs}}{\text{or } n \to \infty}$; 4fold degenerate $\frac{\text{open BCs}}{\text{and } n < \infty}$
- Gap to first excited state (conjectured by Haldane, analytic example by AKLT)
- Ground state is a "valence bond solid" (VBS), frustration-free

• Chain encodes one logical qubit (think of it at C); $|s\rangle \equiv |J_s = 0\rangle$ & $s = \hat{x}, \hat{y}, \hat{z}$.

Chain encodes one logical qubit (think of it at C); |s⟩ ≡ |J_s = 0⟩ & s = x̂, ŷ, 2̂.
 Initialize: Measure |0⟩, |1⟩ on end qubit A

MBQC with AKLT

- Chain encodes one logical qubit (think of it at C); $|s\rangle \equiv |J_s = 0\rangle$ & $s = \hat{x}, \hat{y}, \hat{z}$.
- Initialize: Measure $|0\rangle$, $|1\rangle$ on end qubit A
- Measuring in the $|s\rangle$ basis rotates the qubit by π around s

MBQC with AKLT

 $|\mathcal{G}_{3}\rangle = |1\rangle_{A} \otimes |\hat{z}\rangle_{B_{1}} |\hat{z}'\rangle_{B_{2}} \otimes \sum_{s_{k}} |s_{3}, \dots, s_{n}\rangle_{B} \otimes \sigma_{s_{n}}\sigma_{s_{n-1}} \cdots \sigma_{s_{3}}\sigma_{\hat{z}'}\sigma_{\hat{z}}|0\rangle_{C}$

- Chain encodes one logical qubit (think of it at C); $|s\rangle \equiv |J_s = 0\rangle$ & $s = \hat{x}, \hat{y}, \hat{z}$.
- Initialize: Measure $|0\rangle$, $|1\rangle$ on end qubit A
- Measuring in the $|s\rangle$ basis rotates the qubit by π around s
- Works for rotated basis $|s'\rangle$, too, by spherical symmetry
- Combine measurement in different bases to perform arbitrary rotations
- Compound rotations are probabilistic, but heralded

MBQC with AKLT

Haldane Phase Renormalization

- Gate fidelity decreases when using non-AKLT ground states
- What to do? Renormalize!

Haldane Phase Renormalization

- Gate fidelity decreases when using non-AKLT ground states
- What to do? Renormalize!

Renormalization recipe:

- 1. From three adjacent spins, extract the J = 1 components
- 2. Discard the one antisymmetric in (1, 3) permutations
- 3. Thoroughly mix the remaining two until a nice consistency is reached

Haldane Phase Renormalization

- Gate fidelity decreases when using non-AKLT ground states
- What to do? Renormalize!

Renormalization recipe:

- 1. From three adjacent spins, extract the J = 1 components
- 2. Discard the one antisymmetric in (1, 3) permutations
- 3. Thoroughly mix the remaining two until a nice consistency is reached

- How can we use this? Block measurements undercut the point of MBQC
- Simulate the block spin measurements!

- How can we use this? Block measurements undercut the point of MBQC
- Simulate the block spin measurements!

Suppose we want to do a π rotation around $\hat{x} \cos \theta + \hat{y} \sin \theta$.

 $|z, \theta, z\rangle_{123} \propto |\theta\rangle_J |\chi_s\rangle_L + J \neq 1$ component, $|z, z, z\rangle_{123} \propto |z\rangle_J |0\rangle_L + J \neq 1$ component.

Buffered measurement effectively replicates the block spin measurement

- How can we use this? Block measurements undercut the point of MBQC
- Simulate the block spin measurements!

Suppose we want to do a π rotation around $\hat{x} \cos \theta + \hat{y} \sin \theta$.

 $|z, \theta, z\rangle_{123} \propto |\theta\rangle_J |\chi_s\rangle_L + J \neq 1$ component, $|z, z, z\rangle_{123} \propto |z\rangle_J |0\rangle_L + J \neq 1$ component.

Buffered measurement effectively replicates the block spin measurement

- How can we use this? Block measurements undercut the point of MBQC
- Simulate the block spin measurements!

Suppose we want to do a π rotation around $\hat{x} \cos \theta + \hat{y} \sin \theta$.

 $|z, \theta, z\rangle_{123} \propto |\theta\rangle_J |\chi_s\rangle_L + J \neq 1$ component, $|z, z, z\rangle_{123} \propto |z\rangle_J |0\rangle_L + J \neq 1$ component.

Buffered measurement effectively replicates the block spin measurement

Buffering Works

Holonomic quantum computation from symmetry-protected topological order

First, the short version

- Haldane phase possesses SPTO
- Symmetries of SPTO also define qubit encoding, gates
- Architecture inherits some protection from SPTO

SPTO of 1D systems

- $\blacktriangleright\,$ Topological order doesn't exist for 1D systems. All states are \sim product states
- But in the presence of certain symmetries, distinct phases appear
- For spin-1 chains \Rightarrow Haldane phase

SPTO of 1D systems

- $\blacktriangleright\,$ Topological order doesn't exist for 1D systems. All states are \sim product states
- But in the presence of certain symmetries, distinct phases appear
- For spin-1 chains \Rightarrow Haldane phase
- What symmetries?
 - π rotations about orthogonal axes (D_2)
 - time-reversal
 - bond inversion

SPTO of 1D systems

- $\blacktriangleright\,$ Topological order doesn't exist for 1D systems. All states are \sim product states
- But in the presence of certain symmetries, distinct phases appear
- For spin-1 chains \Rightarrow Haldane phase
- What symmetries?
 - π rotations about orthogonal axes (D₂)
 - time-reversal
 - bond inversion
- What properties?
 - gapped ground state, fourfold degenerate
 - fractionalized spin-¹/₂ edge modes
 - nearest-neighbor, two-body couplings $H_0 = \sum h_{j,j+1}$

Holonomic Quantum Computing with SPTO

D₂ symmetry doesn't just define the phase, also encoded qubits & gates

Holonomic Quantum Computing with SPTO

D₂ symmetry doesn't just define the phase, also encoded qubits & gates

$$H(t) = t \left[(S_1^z)^2 - h_{12} \right] + H_0$$

Holonomic Quantum Computing with SPTO

D₂ symmetry doesn't just define the phase, also encoded qubits & gates

$$H(t) = t \left[(S_1^z)^2 - h_{12} \right] + H_0$$

note D₂ symmetry

Two-qubit gate: CPHASE + $\hat{x} \pi$ rotation

$$H(t) = t \left[W^{AB} - h_{12}^{A} - h_{12}^{B} \right] + H_{0}^{A} + H_{0}^{B}$$
$$W = \left[(S_{1}^{\hat{x}})^{2} - (S_{1}^{\hat{y}})^{2} \right] \otimes S_{1}^{\hat{z}} + S_{1}^{\hat{z}} \otimes \left[(S_{1}^{\hat{x}})^{2} - (S_{1}^{\hat{y}})^{2} \right]$$

Two-qubit gate: CPHASE + $\hat{x} \pi$ rotation

$$H(t) = t \left[W^{AB} - h^A_{12} - h^B_{12} \right] + H^A_0 + H^B_0$$

$$W = \left[(S^{\hat{x}}_1)^2 - (S^{\hat{y}}_1)^2 \right] \otimes S^{\hat{z}}_1 + S^{\hat{z}}_1 \otimes \left[(S^{\hat{x}}_1)^2 - (S^{\hat{y}}_1)^2 \right]$$

not D₂ symmetric, but doesn't close the gap

Measurement

Turn off coupling, measure J_z

- ► +1 \rightarrow $|\uparrow\rangle$
- ▶ -1 \rightarrow $|\downarrow\rangle$
- ▶ 0 → $R_{\hat{z}}(\pi)$

Measurement

Turn off coupling, measure J_z

- ► +1 \rightarrow $|\uparrow\rangle$
- ▶ -1 \rightarrow $|\downarrow\rangle$
- ▶ 0 → $R_{\hat{z}}(\pi)$

Need full SO(3) symmetry!

Advantages

- Just operate on the boundary spin (don't consume spins, as in MBQC)
- Only 2-body interactions
- Don't need terribly long chains: edge modes well-localized
- Don't even need chains at all: can terminate with spin-1/2s! Or convert everything to spin-1/2.
- Robust to symmetry-preserving disorder in the couplings: Only care about total angular momentum
- Gates "immune" to timing errors, intensity fluctuations
- Only need a small number of fixed control fields

Advantages

- Just operate on the boundary spin (don't consume spins, as in MBQC)
- Only 2-body interactions
- Don't need terribly long chains: edge modes well-localized
- Don't even need chains at all: can terminate with spin-1/2s! Or convert everything to spin-1/2.
- Robust to symmetry-preserving disorder in the couplings: Only care about total angular momentum
- Gates "immune" to timing errors, intensity fluctuations
- Only need a small number of fixed control fields
- Indications of *limited* protection against *local* noise @ *low* temperatures
 - Rotating bulk spins doesn't affect the logical state
 - Bigger rotations cost more energy; remove via cooling
 - Rotating boundary spin does affect the logical state
 - Error rates should be suppressed