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Overview

• Developing numerical methods to study 1D critical systems
•Variational algorithm to optimise a MERA description of the ground state

• Ashkin-Teller model
•Believed to be described by c = 1 CFT with continuously varying critical indices

• Extract physical information about the model of interest
•Output of our algorithm is consistent with a conformal field theory conjectured to describe the
thermodynamic limit of the spin models examined
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Multiscale Entanglement Renormalization Ansatz

G. Vidal, Physical Review Letters 99, 220405 (2007).
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Algorithm

• G. Evenbly and G. Vidal, Physical Review B 79, 144108 (2009).

• G. Evenbly and G. Vidal, (2011), arXiv:1109.5334v1 [quant-ph].

• R. N. C. Pfeifer, Simulation of Anyons Using Symmetric Tensor
Network Algorithms, PhD Thesis ,The University of Queensland, 2011.

• G. Evenbly, Foundations and Applications of Entanglement
Renormalization, PhD Thesis, The University of Queensland, 2010.

• S. Singh, R. Pfeifer, and G. Vidal, Physical Review A 82, 050301
(2010).



Scaling of Algorithm

4 8 12 16 20 24 28 32
10−5

10−3

10−1

101

103

χ

Ti
m
e
(S
ec
on

ds
)

Nonsymmetric
Nonsymmetric with projector
Z2

Z2 with projector
Z2 ⊗ Z2

Z2 ⊗ Z2 with projector

χ` = χu = χ̄/5

Fit: aχb

3.46 GHz Dual Core, 192 Gb RAM



Scaling of Algorithm

4 8 12 16 20 24 28 32
10−5

10−3

10−1

101

103

χ

Ti
m
e
(S
ec
on

ds
)

Nonsymmetric
Z2 ⊗ Z2

Z2 ⊗ Z2 with projector

χ` = χu = χ̄/5

Fit: aχb

3.46 GHz Dual Core, 192 Gb RAM



Scaling of Algorithm

4 8 12 16 20 24 28 32
10−5

10−3

10−1

101

103

χ

Ti
m
e
(S
ec
on

ds
)

Nonsymmetric
Z2 ⊗ Z2

χ` = χu = χ̄/5

Fit: aχb

3.46 GHz Dual Core, 192 Gb RAM



Ashkin-Teller Model

J. Ashkin and E. Teller, Physical Review 64, 178 (1943).
J. Sólyom, Physical Review B 24, 230 (1981).
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Ashkin-Teller Phase Diagram

M. Yamanaka, Y. Hatsugai, and M. Kohmoto, Physical Review B 50, 559 (1994).
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Ashkin-Teller Ground State Energy
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Conformal Data

• Thermodynamic limit of critical
spin chain described by a
conformal field theory

• Central charge c
conformal exponents h+ h̄ = ∆
OPE coefficients

• Ashkin-Teller (on our line)
thought to be described by
orbifold boson CFT
c = 1
continuously varying exponents

φ = λ φ
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Ashkin-Teller Scaling Dimensions
λ = 0 χ` = 28 = χ̄/5,χu = 12
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Ashkin-Teller Central Charge

0.5 1 1.5 2

1

1.01

1.02

1.03

R2
AT

Ce
nt
ra
lC

ha
rg
e

MERA
Exact

R2
AT = π

2 cos−1(−λ)

χ` = 12,χu = 8



Ashkin-Teller Continuously Varying Exponents
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Ashkin-Teller Nonlocal/Twisted
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Ashkin-Teller Ising Line

M. Yamanaka, Y. Hatsugai, and M. Kohmoto, Physical Review B 50, 559 (1994).
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Ashkin-Teller Ising Line
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c = 1 CFTs

V. Alba, L. Tagliacozzo, P. Calabrese, J. Stat. Mech P06012 (2011)



Conclusions

• Independently developed code to optimize a MERA description of
ground state

• Incorporated Abelian symmetries present in the models

• Obtained conformal data for Ashkin-Teller consistent with the orbifold
boson CFT

• Obtained conformal data for perturbed cluster state consistent with
the free boson CFT

• Demonstrated a critical line which does not have continuously varying
critical indices
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c = 1 CFTs
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S1 Boson CFT



Perturbed Cluster State Ground State Energy
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Perturbed Cluster State Central Charge
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pCL Continuously Varying Exponents
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Avoided Crossing
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