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Self-correcting memory

Self-correcting memory = physical system
which encode (quantum) information

* reliably

e for a macroscopic period of time

* letting the memory interact with its environment (thermal noise)

e without active error correction

Decoding

Encoding ‘¢z>

Code = degenerate groundspace of a local Hamiltonian
of spin particles on a (2D) lattice.

> |Uy)

TQO inhibits
thermal
stability

Olivier
Landon-Cardinal

Introduction
Thermal stability
Spectral stability

Background
LCPC
Topo order
Self-correction
Known results

Main result
Noise model(s)
No dead-ends
Exp. # of trial
Equivalent models




Self-correcting classical memories hermat

. . stability
2D ferromagnetic Ising model
Olivier

111111111 \4ALAAAA A Landon-Cardinal
. _ z J \AAAAAAAAL
Hising2p = Z 0, Q0 MM WY 1

<7; ,J > MMM \AAAAAAAA Introduction

Thermal stability

. . Spectral stability
* thermally stable: for T<TCurie, no macroscopic error droplets

e contrasts with |D case : point-like excitations which diffuse freely BaC'ESC'”;énd

Topo order

Not stable under perturbation! Self-correction
. Known results

= (small) magnetic field breaks degeneracy

= true for any system with local order parameter Main result

Noise model(s)
No dead-ends
Exp. # of trial
Equivalent models

Quantum systems
= with no local order parameter !
= stable spectrum !

Topologically ordered system !




TQO inhibits

(Archetypical) example : Kitaev’s toric code (1997) e

stability
A Kitaev. Ann. Phys. 303(1), 2-30 (2003)

Periodic boundary Olivier
‘( Landon-Cardinal

conditions

Spin-1/2 on the edges | croduction

Thermal stability

%l %
% % Star QperatOr Spectral stability

Background

. X
— L ‘ LCPC
AS ® 0-33 X X Topo order
iEN(S) X Self-correction

Known results

Plaquette operator

Main result
Noise model(s)

Bp — % 7 No dead-ends

Exp. # of trial
Equivalent models

zEp

All operators commute pairwise. H = — E :AS o E :BP
S p

Kitaev’s toric code is spectrally stable.
s it thermally stable ?




Groundstates
Vs As|v)y = +
Vp Bp‘¢> —

Logical operator : string of Z

Excitations

Unstability of Kitaev’s toric code

O

No energy for anyon
propagation.

O

O

O

O

Thermal fluctuations can accumulate and corrupt the information.
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Outline

Introduction
* Thermal stability
e Spectral stability

Setting and known results
e Local commuting projectors code (LCPC)
* Topological order
e Formal definition of self-correction
e Known results for stabilizer codes and LCPCs

Main result and sketch of the proof
* Noise model(s)
* No dead-ends
e Expected number of trials
* Equivalence between models
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Broad class of 2D codes: LCPCs

N finite dimensional spins located on the vertices of a 2D lattice (V, E).

* bounded strentgh Pxll <1
7o Z Py |Px|| <
XCV * terms commute Px,Py|=0

* |ocal diam(X) > w = Px =0

 frustration-free Y.X PXW> = —|—|¢>

We are interested in the groundspace of H and scaling of the energy gap.
Without loss of generality, Px = projector

Local commuting projector codes (LCPCs)
Px,Py| =0

Px 1)) = +|) Stabilizer
(Px)* = Px
Code projector P = HPX
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Spectrum stability: local topological order TQO inhibits

stability

Spectrum of LCPC Hamiltonian is stable if the Hamiltonian has local Olivier

topological quantum order (LTQO). Landon-Cardinal
Bravyi, Hastings, Michalakis (2010)

Introduction

Local topological quantum order (LTQO) Thermal stability
Spectral stability

® local indistinguishability: local operators cannot discriminate groundstates.

. . . . Background
e local consistency: local groundstate is compatible with global groundspace.™ |+ oc

Topo order
Self-correction

LI VO, Jcg POAP = csP  forbids local order parameter

Main result
Noise model(s)

LC  Local projector on the code Pa= ] Px No dead-ends

Exp. # of trial

XNAF#( Equivalent models

have same kernel.




Formal definition of self-correction TP Inhibits

stability
Thermalization requires detailed knowledge of system dynamics.
Olivier
Simplified model for thermalization Landon-Cardinal
* penalize high energy states (Boltzmann factor) e E/kBT

¢ |[ocal moves in noise model e e
Thermal stability

Noise Decoding Spectral stability

Encoding |¢Z> “ . : > ‘¢f> Background

LCPC

Topo order
Self-correction
Known results

Logical operator : operator that maps groundstate to gs. [K P ] =0

L} Main result

Noise model(s
Sequence of local moves (CPTP maps) that implements logical op? NZ'dead?end(s)
Exp. # of trial
Equivalent models

L> Maximum energy of intermediate states : energy barrier?
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Known results: stabilizer codes & LCPCs ¢hermal

stability
Instability in Kitaev’s toric code

Olivier
Key features S i Landon-Cardinal

Introduction
Thermal stability
Spectral stability

. Background

General result for stabilizer codes o ‘ % LCPC

= cleaning lemma (Bravyi & Terhal ’09) | ° ’ ‘ : lopo order
Self-correction

Known results

Generalization to LCPCs | " Main result

= disentangling lemma . | EO‘T ”(‘dee('j(S)
O dead-endas

Bravyi, Poulin & Terhal ’10 Exp. # of trial
= Haah & Preskill ’12 | Equivalent models

LCPGCs : logical operator is supported on a strip, but not a tensor product.

How to apply it
* through a sequence of local moves!?
e without creating too much energy?
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Main result

Main result (arXiv:1209.5750)
For any 2D local topologically ordered LCP code,
we exhibit a physically realistic error model

corrupting the information.

BHM 10

Local topological order * Spectral stability

this work

Thermal unstability

Tradeoff between spectral and thermal stability.
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Sketch of the proof (1): coarse-graining

Coarse-graining

Pr—1.k
°

e Sites on the strip
e | ocal constraints
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TQO inhibits

Sketch of the proof (ll): fortuitous model armma

stability

Fortuitous model Olivier
Landon-Cardinal

* depolarize every site on the strip N
* project back onto the code

Introduction
Thermal stability
Clearly wipes out the information supported on the strip. sjpreedie il

Background
P k—1.k LCPC
Topo order
Self-correction
Known results

Main result
Noise model(s)
;  No dead-ends
N Exp. # of trial

Equivalent models

Unphysical model: too much energy and projection very unlikely.

|dea : interleave the depolarization step and projection at each site.




Sketch of the proof (lll): iterative randomization model T nnibits

NRE L stability

Iterative randomization model

Olivier
. . . Landon-Cardinal
For every site k (iteration),

* apply random trial unitary

® measure Pk-l,k X L Introduction

Thermal stability
Spectral stability

Background
LCPC
Topo order
Self-correction
Known results

N’

Main result
Noise model(s)
No dead-ends
Exp. # of trial
Equivalent models

N @ ® ®
Immediate properties

* at any step, the energy is constant above the gs energy
* no need to backtrack

To show
* no dead-end and expected number of trials at each iteration is constant
e effect of iterative randomization model = effect of fortuitous model




TQO inhibits

Sketch of the proof (IV): no dead-end thermal

stability
PI.- 1.k

Iterative randomization model

Olivier
. Landon-Cardinal
For every site k,

* apply random trial unitary
* measure Pk-1,k

Introduction
Thermal stability
Spectral stability

Dead-end = impossible to find eligible unitary at a given iteration. Background
State of the strip, yet consistent with previous constraints, can’t be extended. LCPC

Topo order
Self-correction

Simple example: chain of qutrits Known results

G@@Q@@@@OMPQ%&w

Exp. # of trial
|OO> <OO’ + 11> <11 + |22> <22’ Equivalent models

— 00%(00] + [11)(11 P=10...000...0[+1...1)(1...1]

Dead-end: start preparing all 2 state...

Violates local consistency: look at any site k far from defect

pr = Trp P = ’O><O| T ’1><1‘ different kernels
= Try Prp—1,5 Pk x+1 = [0)(0] + |1)(1] +]2)(2|




Sketch of the proof (IV): no dead-end

P
Iterative randomization model

For every site k,
* apply random trial unitary
* measure Pk-1,k

Proposition Local topological order implies that,
at any iteration k, there exists an eligible unitary.

Proof (contrapositive).

Dead end atstep k VUi Pr_1 xUx|yp) = 0

Average over Haar measure Pr_1 5k (Trg (9] ® I, /D) =0

Trace out region at the right of site k Tty [Pr—1x] Trg, [¥] =0

Exists state in image of Pi.1,i for i<k and in kernel of TrP-1k
Violation of local consistency for site k-2.
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Sketch of the proof (IV): expected number of trials @B Inhibies

stability
PI.- 1.k

Iterative randomization model

Olivier
. Landon-Cardinal
For every site k,

* apply random trial unitary
* measure Pk-1,k

Introduction
Thermal stability

° ° ® Spectral stability

Proposition Local topological order implies that,
the expected # of trials at iteration k is a constant. Bac'igégé”d

Topo order

Proof. Introduce maps Self-correction
e successful measurement of Pix  Pr—1.k Snown results
e failed measurement of Pk Qk—1,k Main result
e depolarizing of site k Dy, Noise model(s)

No dead-ends
Exp. # of trial

Biasing map o Equivalent models

Dy Dy

Succes after m failed trials Pi—1.£Dk (Qr—1.6Dk)" = Pr—1,x (-1 ® Dy)

©. @)

Expected # of trials Ay (v) = Z (m+1)Tr |[Pr_1k (521 @ Dy) [¢]]

m=1

=Tr | Pr_1k | (Zk—1 — Eeo1) C@Dy) ]| O




Sketch of the proof (V): equivalence between models

Fortuitous model Iterative randomization model

* depolarize every site on the strip N For every site k

. app!y arbitrary transformation e apply random trial unitary
* project back onto the code e measure Pe.1k

Proposition Both models have same average effect.

Proof. Average effect of iterative randomization model.

Average effect of iteration k Ki-1x = ZOO_O Pr—1.k (8,?11 ® Dk)
= Pr—_1.k ((Z — &) '@ Dk)

Average total effect

Reorder terms
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Outline

Introduction
* Thermal stability
e Spectral stability

Setting and known results
e L ocal commuting projectors code (LCPC)
* Topological order
e Formal definition of self-correction
e Known results for stabilizer codes and LCPCs

Main result and sketch of the proof
* Noise model(s)
* No dead-ends
e Expected number of trials
* Equivalence between models

Discussion
e Towards a better definition of self-correction
e Topologically ordered 2D Hamiltonian -> Anyons?
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Towards a better definition of self-correction

|) Entropy plays a critical role...

ex: 2D ferromagnetic Ising model

Energy barrier: O(L)
Available energy, assuming constant density of defects: (’)(LQ)

Non-zero temperature: minimization of free energy E-TS

| ) Distinction between self-correction and active QEC?

Il B I I N N N N = W
Il I O IE I B B B B =m
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$

= self-correcting
memory?
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Topologically-ordered 2D Hamiltonian implies anyons? TP inhibies

stability

2D Local commuting projectors code + TQO livier

Landon-Cardinal
H = — E P
Introduction
XCV Thermal stability

Spectral stability

Background
LCPC
Topo order
Self-correction

Anyons mOdeI Known results

Main result
Noise model(s)
No dead-ends
Exp. # of trial
Equivalent models

L. Cincio and G. Vidal. arXiv:1208.2623 .
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Main result (arXiv:1209.5750) S
For any 2D local topologically ordered LCP code, we exhibit an ~  OWver
physically realistic error model which corrupts the information.

Hope for self-correcting quantum memories

2D Entropy-protected memory
Non-zero temperature: minimization of free energy E-TS

Entropy barrier: few local noise sequences corrupting info.

3D Codes with scalable energy barrier
m Haah’s cubic code Haah,PRA, 83 (2011) Bravyi & Haah, PRL, 107 (201 1)

= \/Velded codes K. Michnicki, arXiv:1208.3496.




Conclusion

Main result (arXiv:1209.5750)

For any 2D local topologically ordered LCP code, we exhibit an
physically realistic error model which corrupts the information.

Thank you for your attention.
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