70pological Entanglement Entropy in 3D Walker-Wang models

Gavin K Brennen

Dept. of Physics Macquarie University, Sydney

> Jiannis Pachos (U. Leeds) Alex Bullivant (U. Leeds)

ARC CENTRE OF EXCELLENCE FOR ENGINEERED QUANTUM SYSTEMS

Australian Government

- New physics in 3D models
 - Trivial order and confined particles in bulk
 - Topological order and deconfined anyons on boundary
- Potentially new types of particle excitations in bulk

Walker-Wang Models*

- Input
 - 3-manifold discretized on a lattice
 - stick to cubic lattice with or without boundaries
 - decorate so all vertices are 3-valent
 - Unitary Braided Fusion Category (UBFC)
 - Finite label set $L = \{a, b, c, \ldots\}$
 - Creation and annihilation structures $t_a \in \{\pm 1\} \quad \forall a \in L$

- Assume multiplicity free models and self dual charges

A few words on categories (no more!)

- UBFCs
 - Unitary symmetric fusion categories
 - 3D Levin-Wen models (they realize all discrete gauge theories coupled to bosons or fermions)
 - 3D Toric-code
 - Modular Tensor Categories [unitary S-matrix]
 - quantum doubles of spherical fusion categories
 - Kitaev toric code
 - quantum group categories
 - 2D Levin-Wen models
- Unlike 3D Levin-Wen models Walker-Wang models can describe MTCs
- Note: any MTC leads to a TQFT (converse unknown)

Walker-Wang model Hamiltonian

Exactly solvable model

$$H = -\sum_{v} A_{v} - \sum_{p} B_{p}$$
$$B_{p}] = [A_{v}, A_{v'}] = [B_{p}, B_{p'}] = 0$$

• Vertex operators

 $[A_v,$

$$A_{v} \underbrace{\bigvee_{v}}_{b}^{c} = \delta(a \times b \to c) \underbrace{\bigvee_{a}^{v}}_{b}^{c}$$

• Face operators

$$B_p = \frac{1}{\mathcal{D}^2} \sum_{s \in L} d_s B_p^s$$

 $[B_p^s]_{a,b,c,d,p,q,r,u,v,w}^{a^{\prime\prime},b^{\prime\prime},c^{\prime\prime},d^{\prime\prime},p^{\prime\prime},q^{\prime\prime},r^{\prime\prime},u^{\prime\prime},v^{\prime\prime},w^{\prime\prime}}=$

 $R_{q}^{q'b}\overline{R_{c}^{c'r}}\overline{R_{q''}^{q'b''}}R_{c''}^{c'r''}F_{a';ap''}^{a''sp}F_{p';pq''}^{p''sq}F_{q';qb''}^{q''sb}F_{b';bc''}^{b''sc}F_{c';cr''}^{c''sr}F_{r';ru''}^{r''su}F_{u';ud''}^{u''sd}F_{d';dv''}^{d''sv}F_{v';vw''}^{v''sw}F_{w';wa''}^{w''sa}F_{v';vw''}^{v''sw}F_{v''v''sw}F_{v''v''sw}F_{v''v''sw}F_{v''sw}F_{v''sw}F_{v''sw}F_{v'''sw}F_{v''sw}F_{v'''sw}F_{v''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v'''sw}F_{v''''sw}F_{v'''sw}F_{v'''sw}F_{v''''sw}F_{v'''sw}F_{v'''sw}F_{v''''sw}F_{v'''sw}F_{v'''sw}F_{v''''sw}F_{v'''sw}F_{v''''sw}F_{v''''sw}F_{v'''sw}F_{v''''sw}F_{v''''sw}F_{v''''sw}F_{v''''sw}F_{v''''''}F_{v''''sw}F_{v'''''''}F_{v''''''$

No Jen eight end of strand 5 control duise Viele P In Jing so we needed the $a^{"}a/P$ $a^{"}/P$ $H = -\sum_{t} A_{t} - \sum_{t} B_{t}$ A is - privet. $B = \sum_{f} \frac{1}{D^{t}} B_{f}^{s}$ Be is - pricetor $= \sum_{p''} (F_{a})^{a''} + \sum_{p''} F_{a}$ Frind states are investigat unker $f_{V}: \int = \delta(axb \rightarrow c)$ insertion of log project - w. $\hat{\omega} = \sum \frac{J_s}{D^2} \hat{s}$ ie Juks like OF are each tripsis at matile (with applitude ds) $\sum_{s\in L} \frac{1}{D^2} = 1$ Ripst this 9 min time (each time picking up a sum wer on F synt. 1) until end up with bubble Enderted on a bisis 14, abed porture we need to twist 2 vertical strands at if the way to fit the ling is inside $\frac{5}{a'' q a''} = \frac{5}{a'' a''} = \frac{1}{2a''}$ Now Und. b.th twists 1 Multiplics 14 stel porumo 5 This filling since 50 Then < 4, a'b' B' " " Be 4, at cd par usu? $= R^{1/2} R^{2/2} R^{1/2} R^{2/2} (F_{1}^{n'} s_{1}^{p}) (F_{1}^{n$ $W = a'' = \frac{z}{a'} = \frac{z}{a'}$

A non-modular WW model: 3D Toric code

; ENG) [B_B_]=0 BI B_ (B, B,)= B, B, = 0 Excitations: Vertex Lifects B = -Fre Lfects Br=- $W_{(C_{Ac})} = J$ Vertus Infacts created by 165 ammites with H except at $W(C_{n})$ end prints so defects no decentine endpints $W_{p}(s) = T \sigma^{2}$ Free Lefects creeted by Empy ast al. trijutiry of end prints 2 indicated frace grand status penerated by 3 ancostratille On 30 Junes & Superents grand status provented by Wy exections in the 3 perilie treations

--N --T 6 -1 1 11 5 m.Jular 31 沾 m. Lili

16

9

5

5

Ĩc

I. Modular trap

Two identities

2. Handle sliding

Together they imply MTCs have confined particles

 $B_{p} = \frac{1}{D^{2}} \sum_{s \in L} J_{s} W^{s}(p)$ Shir handlestik and in obert a way from string confirmint proofs p)-j-otte p 155=Bp 157 W'B, 1957 B, W'B, 195> mile stipe ety w 16 IF · MTC + Pi= Jini -1 B, W'B, 1957 = J. W B, 1957 S. my no trivial string paratir Wi violates a plaquette yerd or that it pierces

Walker-Wang models from MTC: examples

- Non-Abelian anyons on boundary

- Overview of Walker Wang models with MTC input
 - All particles confined in the bulk
 - may be deconfined on a boundary
 - Non-degenerate ground states on a system without boundaries
 - Explicitly broken time-reversal symmetry in the bulk
 - Boundary modes are gapped
 - Boundaries act like fractional topological insulators with topological properties of 2D fractional quantum Hall systems
 - This in contrast to fractional topological insulators which have protected gapless boundary modes

C.W. von Keyserlingk, F.J. Burnell, and S.H. Simon **87**, 045107 (2013).

• What about topological entanglement entropy?

Topological Entanglement Entropy

• Constant correction to area law behaviour of entropy of a subsystem A

 $S(\rho_A) \equiv -\operatorname{tr}[\rho_A \log_2(\rho_A)] = \alpha |\partial A| - \gamma + \varepsilon \quad \text{Goes to zero for large boundary}$ • Two standard methods to compute in 2D S_{topo}

Levin&Wen

Kitaev&Preskill

- Extrusion to 3D
 - Levin&Wen type decomposition

C.W. von Keyserlingk, F.J. Burnell, and S.H. Simon **87**, 045107 (2013).

- Kitaev&Preskill type decomposition

T. Grover, A.M. Turner, and A.Vishwanath, Phys. Rev. B **84**, 195120 (2011).

- Alternative approach
 - Choose elementary cube and freeze boundaries to |0
 angle
 - Taking into account fusion constraints at corners problem reduces to a $|L|^{12}$ dimensional Hilbert space. Plaquette operators are 8 body
 - Compute ground state $|G\rangle$
 - Compute system entropy for subsystems
 - Plot entropy as a function of number of boundaries produced by cuts
 - Intercept is the top. ent. entropy
- Results
 - **3D** Toric code $S_{topo} = log(2) = 1$
 - non modular
 - 3D Semion model $S_{topo} = 0$
 - modular
 - 3D Fibonacci model $S_{topo} = 0$
 - modular

Conclusions

- Physics of topological lattice models is richer in 3D vs. 2D
- All particles are confined when the theory is modular
- Evidence that the topological entanglement entropy in the ground state is trivial in the bulk
- To do: Make the argument for TEE general
 - Use the modular structure directly (perhaps in terms of lack of symmetry contraints on Schmidt coefficients of a bipartite decomposition)
 - Investigate TEE for excited states
 - Can one deform the Hamiltonian to allow for loop like excitations in the bulk with dynamic stability (mass independent of loop size)?