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Why simulate Gauge 
theories?

The study of  Gauge theories is the study of  Nature.
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The study of  Gauge theories is the study of  Nature.

Gauge symmetry as a fundamental principle

Gauge symmetry as an emergent phenomenon

Gauge symmetry as a resource
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Gauge symmetry as a 
fundamental principle

Standard model: for every 
force there is a gauge boson,

• The photon is the “carrier” 
of  the electromagnetic force.

•The W+, W- and Z0 are the “carriers” 
of  the weak force.

• The gluons are the “carriers” 
of  the strong force.
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•The W+, W- and Z0 are the “carriers” 
of  the weak force.

• The gluons are the “carriers” 
of  the strong force.

Gauge theories on a 
discrete lattice structure.

K. Wilson, Phys. Rev. D 
(1974)

Non-perturbative approach to 
fundamental theories of  matter, 

e.g. Q.C.D.

hOi = 1

Z

Z
D [ , U ] e�S[ ,U ]O [ , U ]

⇠ 1

N

NX

n=1

e�S[ n,Un]O [ n, Un]

⇠ 1

N

X

P [Un]/e�S[ n,Un]

O [ n, Un]

Monte Carlo simulation = Classical Statistical Mechanics
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Gauge symmetry as a 
fundamental principle

Achievements by classical 
Monte-Carlo simulations:

•first evidence of  quark-gluon plasma
• ab-initio estimate of  the entire 

hadronic spectrum

S. Dürr, et al., Science (2008)
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Difficult problems on 
classical machines

Real time evolution:
Heavy ion experiments

(collisions)

7miércoles 15 de enero de 14



Difficult problems on 
classical machines

Real time evolution:
Heavy ion experiments

(collisions)

QCD with finite density of  fermions:
Dense nuclear matter, color superconductivity

(phase diagram of  QCD)
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M.G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, Rev. Mod. Phys. (2008)
K. Fukushima, T. Hatsuda, Rep. Prog. Phys. (2011)

E. Dagotto, Science (2005)
M.R. Norman, D. Pines, C. Kallinl, Adv. Phys. (2005)

P. Wahl, Nat. Phys. (2012)

Frustrated spin models:
Spin liquid physics, RVB states
(High Tc superconductivity?)
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What is this talk about?

Feynman’s universal 
quantum simulator 

Controlled quantum device which 
efficiently reproduces the dynamics of  

any other many-particle quantum system.

How?… cold atoms, ions, photons, 
superconducting circuit, etc.

J.I. Cirac, P. Zoller
I. Bloch, J. Dalibard, S. Nascimbène

R. Blatt, C.F. Roos,
A. Aspuru-Guzik, P. Walther

A.A. Hock, H.E. Türeci, J. Koch
Nature Physics Insight - Quantum Simulation (2012)

Related works at ICFO, Barcelona (M. Lewenstein’s group) and MPQ, Munich (I. Cirac’s group)
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Feynman’s universal 
quantum simulator 

Controlled quantum device which 
efficiently reproduces the dynamics of  

any other many-particle quantum system.

How?… cold atoms, ions, photons, 
superconducting circuit, etc.

Tensor network 
simulation

Variational (non-perturbative) 
for Hamiltonian systems

Extremely useful in 1D systems (MPS)
Proposals and extensions in higher 

dimensions (TNS)  

Ground states
Low-energy excitations

Thermal states
Time evolution

· · · A AA
s
x�1 s

x

s
x+1

· · ·

See talks by G. Vidal,
G. Brennen and T. Osborne
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Simulation of  Lattice 
Gauge TheoriesLattice gauge 

theory

 
x

U
x,x+1

: fermion

: gauge 
boson

String breaking
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String breaking

• Hamiltonian formulation of  lattice gauge theories.
(degrees of  freedom, symmetry generators, dynamics)

• Tensor Networks and Gauge Symmetry

• Phase diagram of  a U(1) Quantum Link Model in (1+1)-d

• Implementation of  quantum link models

• Outlook & Conclusions
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Hamiltonian formulation of  
lattice gauge theories

Global symmetries:

H = �t
P

x

�
 †
x

 
x+1 + h.c.

�

J.B. Kogut, L. Susskind, PRD (1975)
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x,x+1 = V †U

x,x+1V = e�i✓

xU
x,x+1e

i✓

x+1

Local conserved quantities

V = e�i
P

y ✓yGy : [H,Gy] = 0, 8y
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Hamiltonian formulation of  
lattice gauge theories

A gauge invariant model is defined by:
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Hamiltonian formulation of  
lattice gauge theories

A gauge invariant model is defined by:

Set of  local operators acting on the vertices 
(matter fields) and on the links (gauge fields)

(operators acting on a Hilbert space)

U1,2

U2,3

U3,4

U4,1

1 2

34

J.B. Kogut, L. Susskind, PRD (1975)
J.B. Kogut, Rev. Mod. Phys. (1979)

ref. Creutz and Montvay/Muenster books

U
x,y

 †
x

 y
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Hamiltonian formulation of  
lattice gauge theories

Gauge invariant quantum Hamiltonian:

[H,G
x

] = 0 8x Local conserved quantitites
Gauge (local) symmetries

Hamiltonian
Gauge (local) 

generators
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Hamiltonian formulation of  
lattice gauge theories

Set of  local generators of  gauge transformations

Generators of  the local U(1) symmetry:

U
~x,+x̂

U
~x,�x̂

U
~x,+ŷ

U
~x,�ŷ

 
~x
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Hamiltonian formulation of  
lattice gauge theories
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Generators of  the local U(1) symmetry:

U
~x,+x̂

U
~x,�x̂

U
~x,+ŷ

U
~x,�ŷ

 
~x

 ̃
x

= ei✓x 
x

= ei
P

z

✓

z

G

z 
x

e�i

P
z

✓

z

G

z

Ũ
x,y

= e�i✓

xU
x,y

ei✓y

= ei
P

z

✓

z

G

zU
x,y

e�i

P
z

✓

z

G

z

Local phase 
transformation
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Hamiltonian formulation of  
lattice gauge theories

Set of  local generators of  gauge transformations

Define the “physical” 
Hilbert space:

G
x

|physicali = 0[H,G
x

] = 0 8x

H = Hinv �Hvar

Gauge 
invariant

Gauge 
variant
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Hamiltonian formulation of  
lattice gauge theories
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Hilbert space:

G
x

|physicali = 0

h
⇢� ~r · ~E

i

phys
= 0 : Gauss’ law

matter

G
x

=  †
x

 
x

�
X

µ̂

E
x,x+µ̂

� E
x�µ̂,x

electric field

ex.- U(1) group

[H,G
x
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Hamiltonian formulation of  
lattice gauge theories

Set of  local generators of  gauge transformations

Define the “physical” 
Hilbert space:

G
x
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= 0 : Gauss’ law

matter

G
x

=  †
x

 
x

�
X

µ̂

E
x,x+µ̂

� E
x�µ̂,x

electric field

ex.- U(1) group

[H,G
x

] = 0 8x

Wilson’s formulation: U
x,y

! ei�x,y E
x,y

! �i
@

@�
x,y

H = Hinv �Hvar

Gauge 
invariant

Gauge 
variant
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1

3

2

4

E
x,x+1 ! Sz

x,x+1

U
x,x+1 ! S+

x,x+1

Gauge fields span a finite-dimensional 
local Hilbert space

D. Horn, Phys. Lett. B (1981)
P. Orland, D. Röhrlich, Nucl. Phys. B (1990)

S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B (1997)

Quantum link formulation

Spin S = ½, 1, ...
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U
x,x+1 ! S+

x,x+1

Gauge fields span a finite-dimensional 
local Hilbert space

D. Horn, Phys. Lett. B (1981)
P. Orland, D. Röhrlich, Nucl. Phys. B (1990)

S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B (1997)

Q.C.D. can be formulated as a 
non-abelian quantum link model

R. Brower, S. Chandrasekharan, U.-J. Wiese, Phys. Rev. D (1999) 
R. Brower, S. Chandrasekharan, S. Riederer, U.-J. Wiese, Nucl. Phys. B (2004) 

Quantum link formulation

Spin S = ½, 1, ...
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)

Local degrees of  freedom.-

Quantum two level system living on the link

L. Balents, Nature (2010)
C. L. Henley, Ann. Rev. Cond. Matt. Phys. (2010)

C. Castelnovo, R. Moessner, and S.L. Sondhi, 
Ann. Rev. Cond. Matt. Phys. (2012) 

{�(3)
x,y

,�(+)
x,y

,�(�)
x,y

}
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)

Local generator of  gauge transformations.-

Local generator around every vertex

U(1) gauge transformation

Gvert = �(3)
1,2 + �(3)

2,3 + �(3)
3,4 + �(3)

4,1

exp


i
✓vert
2

Gvert

�
�(+)
1,2 exp


�i

✓vert
2

Gvert

�
= ei✓vert�(+)

1,2
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)

Local generator of  gauge transformations.-

“Physical” Hilbert space (Gauss’ law)

6-vertex model:
zero magnetization subspace

Gvert|physi = 0
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Quantum Link models
Connections with Condensed Matter

(U(1) gauge theory-Quantum Spin Ice model)

Gauge invariant Hamiltonian.-

[H,Gvert] = 0, 8 vertex

magnetic term

H = �
X

plaq

⇥
�+
1,2�

�
2,3�

+
3,4�

�
4,1 + ��

1,2�
+
2,3�

�
3,4�

+
4,1

⇤
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Quantum Link models
Local degrees of  freedom.-

Spin-½: Spin-1:

E=+1
E=1/2

E=-1/2
E=0, no flux

E=-1

Quantum link carrying an electric flux

U
x,y

⌘ S+
x,y

E
x,y

⌘ S(3)
x,y
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Spin-½: Spin-1:

E=+1
E=1/2

E=-1/2
E=0, no flux

E=-1

Quantum link carrying an electric flux

U
x,y

⌘ S+
x,y

E
x,y

⌘ S(3)
x,y

Gauge invariant Hamiltonian.-

Electric term Magnetic term

H =
g2

2

X

hx,yi

[E
x,y

]2 � 1

4g2

X

plaq

h
U †
1,2U2,3U

†
3,4U4,1 + U1,2U

†
2,3U3,4U

†
4,1

i

S(3)
x,y

S+
x,y

S�
x,y
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U(1) Quantum Link 
model with matter

x y

H = �t
X

hx,yi

 †
x

S+
xy

 
y

+ h.c. + . . .

Matter - gauge interaction
= hopping of  fermions mediated by a quantum link

= hopping of  particle and flips spin
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U(1) Quantum Link 
model with matter

x y

H = �t
X

hx,yi

 †
x

S+
xy

 
y

+ h.c. + . . .

Matter - gauge interaction
= hopping of  fermions mediated by a quantum link

= hopping of  particle and flips spin

[Gx , H ] = 0 8x

G

x

|™i= 0 8x

G
x

=  †
x

 
x

�
X

i

⇣
E
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Tensor networks 
and gauge symmetry

Two independent local constraints

“Physical” Hilbert space (Gauss’ law)
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Tensor networks 
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Tensor networks 
and gauge symmetry
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generator
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Schwinger model: QED in (1+1)-d

Hamiltonian: staggered fermions in 1D coupled to quantum link spin S
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Phenomenology

|0i |1i

Spin-1/2 representation
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Vacuum (reference) state
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Phase diagram: QED link model in (1+1)-d
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Phenomenology
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Atomic implementation

Building blocks:
Gauge field: bosonic double-well potentials
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Atomic implementation
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Atomic implementation
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Atomic implementation
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Atomic implementation
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Atomic implementation
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Atomic implementation
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Atomic implementation
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Atomic implementation
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Phenomenology
Confinement and string breaking: QED in (1+1)-d (Schwinger model)

|0i |1i
|� 1i |0i |+ 1i

Spin-1 representation
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Phenomenology
Confinement and string breaking: QED in (1+1)-d (Schwinger model)
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Observability of  phenomena
Preparation of  

many body states
(Mott phase)

Greiner et al. (2002)
Joerdens et al. (2008)
Schneider et al. (2008)
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Evolution
(Super-exchange)

can create a highly entangled multiparticle state20,21, known as a ‘cluster 
state’36, which can be used as a resource state for quantum information 
processing. The superposition principle of quantum mechanics allows 
this to be achieved in a highly parallel way, using a state-dependent optical 
lattice, in which different atomic spin states experience different periodic 
potentials20,21. Starting from a lattice where each site is filled with a single 
atom, the atoms are first brought into a superposition of two internal 
spin states. The spin-dependent lattice is then moved in such a way that 
an atom in two different spin states splits up and moves to the left and 
right simultaneously so that it collides with its two neighbours. In a single 
operation, a whole string of atoms can thereby be entangled. However, if 
the initial string of atoms contained defects, an atom moving to the side 
may have no partner to collide with, so the length of the entangled cluster 
would be limited to the average length between two defects. The sorted 
arrays of atoms produced by an ‘atomic sorting machine’ could prove to 
be an ideal starting point for such collisional quantum gates, as the initial 
arrays are defect free. In addition, defects could be efficiently removed by 
further active cooling of the quantum gases in the lattice. Indeed, such 
cooling is necessary to enhance the regularity of the filling achieved with 
the current large-scale ensembles. Several concepts related to ‘dark state’ 
cooling methods from quantum optics and laser cooling could help in 
this case. The atoms could be actively cooled into the desired many-body 
quantum state, which is tailored to be non-interacting (that is, dark) with 
the applied cooling laser field37,38.

When constructing such entangled states, the particles’ many degrees 
of freedom can couple to the environment, leading to decoherence, 
which will destroy the complex quantum superpositions of the atoms. 
To avoid such decoherence processes, which affect the system more the 
larger it becomes, it is desirable to construct many-particle states, which 
are highly insensitive to external perturbations. Unfortunately, when 
using the outlined controlled-collisions scheme to create an atomic 
cluster state, the atomic qubits must be encoded in states that undergo 
maximal de coherence with respect to magnetic field fluctuations. Two 
recent experiments have shown how decoherence could be avoided, by 
imp lementing controlled exchange interactions between atoms23,39; this 
could lead to new ways of creating robust entangled states (discussed in 
the next section). Another way to avoid the problem of decoherence is to 
apply faster quantum gates, so more gate operations could be carried out 
within a fixed decoherence time. For the atoms of ultracold gases in optical 
lattices, Feshbach resonances40,41 can be used to increase the collisional 
interactions and thereby speed up gate operations. However, the ‘unitarity 
limit’ in scattering theory does not allow the collisional interaction energy 
to be increased beyond the on-site vibrational oscillation frequency, so the 
lower timescale for a gate operation is typically a few tens of microseconds. 
Much larger interaction energies, and hence faster gate times, could be 
achieved by using the electric dipole–dipole interactions between polar 
molecules42, for example, or Rydberg atoms43,44; in the latter case, gate 
times well below the microsecond range are possible. For Rydberg atoms, a 
phase gate between two atoms could be implemented by a dipole-blockade 
mechanism, which inhibits the simultaneous excitation of two atoms and 
thereby induces a phase shift in the two-particle state only when both 
atoms are initially placed in the same quantum state. The first signs of such 
a Rydberg dipole-blockade mechanism have been observed in mesoscopic 
cold and ultracold atom clouds45–48, but it remains to be seen how well they 
can be used to implement quantum gates between two individual atoms. 
Rydberg atoms offer an important advantage for the entanglement of neu-
tral atoms: they can interact over longer distances, and addressing single 
atoms in the lattice to turn the interactions between these two atoms on 
and off avoids the need for the atoms to move. In addition, the lattice does 
not have to be perfectly filled for two atoms to be entangled if their initial 
position is known before applying the Rydberg interaction.

Novel quantum gates via exchange interactions
Entangling neutral atoms requires state-dependent interactions. A nat-
ural way to achieve this is to tune the collisional interactions between 
atoms to different strengths for different spin states, or to allow explicitly 
only specific spin states into contact for controlled collisions. Another 

possibility is to exploit the symmetry of the underlying two-particle 
wavefunctions to create the desired gate operations, even in the case 
of completely spin-independent interactions between atoms. This 
principle lies at the heart of two experiments to control the spin–spin 
interactions between two particles using exchange symmetry23,39,49, and 
builds on original ideas and experiments involving double quantum-
dot systems25,26. 

Research teams at the National Institute of Standards and Technol-
ogy (NIST) at Gaithersburg, Maryland, and the University of Mainz, 
Germany, have demonstrated such interactions for two atoms in a 
double-well potential. How do these exchange interactions arise, and 
how can they be used to develop primitives (or building blocks) for 
quantum information processing? As one of the fundamental principles 
of quantum mechanics, the total quantum state of two particles (used in 
two experiments) has to be either symmetrical in the case of bosons or 
antisymmetrical for fermions, with respect to exchange of the two par-
ticles. When trapped on a single lattice site, a two-particle bosonic wave-
function can be factored into a spatial component, which describes the 
positions of the two particles, and a spin component, which describes 
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Figure 5 | Superexchange coupling between atoms on neighbouring lattice 
sites. a, Virtual hopping processes (left to right, and right to left) mediate 
an effective spin–spin interaction with strength Jex between the atoms, 
which can be controlled in both magnitude and sign by using a potential 
bias ∆ between the wells. U is the on-site interaction energy between the 
atoms on a single lattice site, and J is the single-particle tunnel coupling. 
b, The effective spin–spin interaction emerges when increasing the 
interaction U between the particles relative to their kinetic energy J (top 
to bottom). It can be observed in the time evolution of the magnetization 
dynamics in the double well. Blue circles indicate spin imbalance, and 
brown circles indicate population imbalance. The curves denote a fit to a 
theoretical model taking into account the full dynamics observed within the 
Hubbard model. (Reproduced, with permission, from ref. 39.) 
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sites. a, Virtual hopping processes (left to right, and right to left) mediate 
an effective spin–spin interaction with strength Jex between the atoms, 
which can be controlled in both magnitude and sign by using a potential 
bias ∆ between the wells. U is the on-site interaction energy between the 
atoms on a single lattice site, and J is the single-particle tunnel coupling. 
b, The effective spin–spin interaction emerges when increasing the 
interaction U between the particles relative to their kinetic energy J (top 
to bottom). It can be observed in the time evolution of the magnetization 
dynamics in the double well. Blue circles indicate spin imbalance, and 
brown circles indicate population imbalance. The curves denote a fit to a 
theoretical model taking into account the full dynamics observed within the 
Hubbard model. (Reproduced, with permission, from ref. 39.) 
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of a phase hologram. This is in contrast to conventional optical lattice
experiments in which lattice potentials are created by superimposing
separate laser beams to create optical standing waves. The advantage
of the new method is that the geometry of the lattice is directly given by
the pattern on the mask. The imaged light pattern, and hence the
potential landscape, can be arbitrary within the limits set by the avail-
able imaging aperture and by polarization effects that can arise due to
the large aperture imaging beyond the paraxial limit. Here, we create
blue detuned square lattice potentials with a periodicity a 5 640 nm
and an overall Gaussian envelope. A major additional advantage is the
fact that the lattice geometry is not dependent on the wavelength20,
apart from diffraction limits and chromatic aberrations in the lens for
large wavelength changes. This allows us to use spectrally wide ‘white’
light with a short coherence length to reduce unwanted disorder from
stray light interference. With a light source centred around 758 nm, we
generate a conservative lattice potential with a lattice depth of up to 35
Erec, where Erec 5 h2/8ma2 is the recoil energy of the effective lattice
wavelength, with m the mass of 87Rb.

The projection method also enables us to dynamically change the
wavelength of the lattice light without changing the lattice geometry.
This is important, as we strongly increase the lattice depth for site-
resolved imaging in order to suppress diffusion of the atoms between
sites due to recoil heating by the imaging light13. For this, we switch
the light in the 2D lattice and the vertical standing wave to near-
resonant narrow band light, increasing the lattice depth to 5,500
Erec (to 380 mK). The main use of the microscope set-up is the col-
lection of fluorescence light and high-resolution imaging of the
atoms. With the atoms pinned to the deep lattice, we illuminate
the sample with red detuned near-resonant light in an optical
molasses configuration, which simultaneously provides sub-
Doppler cooling24,25. Figure 2 shows a typical image obtained by
loading the lattice with a very dilute cloud, showing the response
of individual atoms. The spot function of a single atom can be
directly obtained from such images. We measure a typical single
atom emission FWHM size as 570 nm and 630 nm along the x and
y direction, respectively, which is close to the theoretical minimum
value of ,520 nm (Fig. 3). This minimum is given by the diffraction
limit from the objective combined with the finite size of the camera

pixels and the expected extent of the atom’s on-site probability dis-
tribution within the lattice site during the imaging process. As the
same high-resolution optics are used to generate both the lattice and
the image of the atoms on the CCD camera, the imaging system is
very stable with respect to the lattice, which is important for single-
site addressing26. The observed drifts in the 2D plane are very low, less
than 10% of the lattice spacing in one hour with shot to shot fluctua-
tions of less than 15% r.m.s.

Pair densities within multiply occupied lattice sites are very high
due to the strong confinement in the lattice. When resonantly illu-
minated, such pairs undergo light assisted collisions and leave the
trap within a time of the order of 100 ms, long before they emit
sufficient photons to be detected27. Therefore the remaining number
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Figure 1 | Diagram of the quantum gas microscope. The two-dimensional
atom sample (a) is located a few micrometres below the lower surface of a
hemispherical lens inside the vacuum chamber. This lens serves to increase
the numerical aperture (NA) of the objective lens outside the vacuum (b) by
the index of refraction, from NA 5 0.55 to NA 5 0.8. The atoms are
illuminated from the side by the molasses beams (c) and the scattered
fluorescence light is collected by the objective lens and projected onto a CCD
camera (d). A 2D optical lattice is generated by projecting a periodic mask
(e) onto the atoms through the same objective lens via a beam splitter
(f). The mask is a periodic phase hologram, and a beam stop (g) blocks the
residual zeroth order, leaving only the first orders to form a sinusoidal
potential.
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Figure 2 | Imaging single atoms. a, Field of view with sparse site occupation.
b, Response of a single atom, derived from sparse images: shown are
horizontal (filled circles) and vertical (open circles) profiles through the
centre of the image generated by a single atom. The black line shows the
expected Airy function for a perfect imaging system with a numerical
aperture of 0.8. The blue dashed line denotes the profile expected from a
single atom, taking into account only the finite width of the CCD pixels and
the finite extension of the probability distribution of the atom’s location.
The data are from the responses of 20 atoms in different locations within the
field of view which have been precisely superimposed by subpixel shifting
before averaging.

5 μm

640 nm

Figure 3 | Site-resolved imaging of single atoms on a 640-nm-period
optical lattice, loaded with a high density Bose–Einstein condensate. Inset,
magnified view of the central section of the picture. The lattice structure and
the discrete atoms are clearly visible. Owing to light-assisted collisions and
molecule formation on multiply occupied sites during imaging, only empty
and singly occupied sites can be seen in the image.
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atoms, which ideally should remain unaffected. For this purpose, we
monitored the probability of finding a hole at the sites next to the
addressed ones (dark blue regions in Fig. 3a, b and points in Fig. 3c). In
order to distinguish accidentally flipped neighbouring atoms from
holes that originate from thermal excitations of the initial Mott insu-
lator28, we also monitored the probability of finding a hole at the
second next neighbours (light blue regions and points in Fig. 3). As
both yielded the same hole probability of 6(2)%, we attribute all holes
to thermal excitations and conclude that the probability of addressing
a neighbouring atom is indiscernibly small. We fitted the hole prob-
ability p0(dx) of the addressed site with a flat-top model function (see
Methods), keeping the offset fixed at the thermal contribution of 6%.
From the fit, we derived a spin-flip fidelity of 95(2)%, an FWHM of
sa 5 330(10) nm and an edge sharpness of ss 5 50(10) nm (Fig. 3c).
These values correspond to 60% and 10% of the addressing beam
diameter, demonstrating that our method reaches sub-diffraction-
limited resolution, well below the lattice spacing.

The observed maximum spin-flip fidelity is currently limited by the
population transfer efficiency of our microwave sweep. The edge
sharpness ss originates from the beam pointing error of = 0.1 alat
and from variations in the magnetic bias field. The latter causes fre-
quency fluctuations of ,5 kHz, which translate into an effective
pointing error of 0.05 alat at the maximum slope of the addressing
beam profile. The resolution sa could in principle be further reduced
by a narrower microwave sweep, at the cost of a larger sensitivity to
the magnetic field fluctuations. A larger addressing beam power
would reduce this sensitivity, but we observed that this deformed
the lattice potential, owing to the imperfect s2-polarization, allowing
neighbouring atoms to tunnel to the addressed sites.

Coherent tunnelling dynamics
The preparation of an arbitrary atom distribution opens up new pos-
sibilities for exploring coherent quantum dynamics at the single-atom
level. As an example, we studied the tunnelling dynamics in a one-
dimensional lattice (Fig. 4) which allowed us to determine how much
our addressing scheme affects the vibrational state of the atoms. We
started by preparing a single line of up to 18 atoms along the y direction
before we lowered the lattice along the x direction to Vx 5 5.0(5) Er

within 200ms. At the same time, the other lattices were lowered to
Vy 5 30 Er and Vz 5 23 Er, which reduced the external confinement
along the x direction, but still suppressed tunnelling in the y and z
directions. After a varying hold time t, allowing the atoms to tunnel
along x, the atomic distribution was frozen by a rapid 100ms ramp of all
lattice axes to 56–90 Er. By averaging the resulting atomic distribution
along the y direction and repeating the experiment several times, we
obtained the probability distribution of finding an atom at the different
lattice sites (Fig. 4, bottom row).

This probability distribution samples the single-atom wave-
function after a coherent tunnelling evolution. We observed how
the wavefunction expands in the lattice and how the interference of
different paths leads to distinct maxima and minima in the distri-
bution, leaving for example almost no atoms at the initial position
after a single tunnelling time (Fig. 4c). This behaviour differs mark-
edly from the evolution in free space, where a Gaussian wave packet
disperses without changing its shape, always preserving a maximum
probability in the centre. For longer hold times, an asymmetry in the
spatial distribution becomes apparent (Fig. 4d), which originates from
an offset between the bottom of the external harmonic confinement
and the initial position of the atoms.

We describe the observed tunnelling dynamics by a simple
Hamiltonian including the tunnel coupling J(0) between two neighbour-
ing sites and an external harmonic confinement, parameterized by the
trap frequency vtrap, and the position offset xoffs (Methods). A single fit
to all probability distributions recorded at different hold times yields
J(0)/B5 940(20) Hz, vtrap/(2p) 5 103(4) Hz and xoffs 5 26.3(6) alat.
This is in agreement with the trap frequency vtrap/(2p) 5 107(2) Hz
obtained from an independent measurement via excitation of the dipole
mode without the x lattice, whose contribution to the external confine-
ment is negligible compared to the other two axes. From J(0), we calcu-
lated a lattice depth of Vx 5 4.6(1) Er, which agrees with an independent
calibration via parametric heating. The expansion of the wave packet
can also be understood by writing the initial localized wavefunc-
tion as a superposition of all Bloch waves of quasi-momentum Bq,
with 2p/alat # q #p/alat. To each quasi-momentum Bq, one can
assign a velocity vq~

1
B

LE
Lq, determined by the dispersion relation

E(q) 5 22J(0) cos(qalat) of the lowest band. The edges of the wave
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Figure 2 | Single-site addressing. a, Top, experimentally obtained
fluorescence image of a Mott insulator with unity filling in which the spin of
selected atoms was flipped from | 0æ to | 1æ using our single-site addressing
scheme. Atoms in state | 1æ were removed by a resonant laser pulse before
detection. Bottom, the reconstructed atom number distribution on the lattice.
Each filled circle indicates a single atom; the points mark the lattice sites. b, Top,
as for a except that a global microwave sweep exchanged the population in | 0æ

and | 1æ, such that only the addressed atoms were observed. Bottom, the
reconstructed atom number distribution shows 14 atoms on neighbouring
sites. c–f, As for b, but omitting the atom number distribution. The images
contain 29 (c), 35 (d), 18 (e) and 23 (f) atoms. The single isolated atoms in
b, e and f were placed intentionally to allow for the correct determination of the
lattice phase for the feedback on the addressing beam position.
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Conclusions and Outlook

• MPS and TNS in higher dimensions are exact descriptions of  the 
“physical” gauge invariant subspace of  QLM with Abelian and non-

Abelian symmetry.

• We have characterized the phase diagram of  a (1+1)-d QLM version of  
the Schwinger model, finding a phase transition between a CP ordered 

to a CP disordered phase described by the Ising universality class.

• We have seen how to implement in an AMO setup this U(1) QLM which 
is a relevant explame as its implementation in cold atom gases can be 

foreseen in the next years.
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