
Positivity and sparsity in time-frequency distributions
(with the benefit of hindsight)
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Outline

I Social science & math of phase spaces

I Why grown-ups should care

I Positivity & sparsity via uncertainty relations



The social science of phase
spaces



The story as told by a quantum optician

I Maps density operators to pseudo-probability distribution on
phase space (position-momentum plane).

I Displays most properties of a probability distribution
I sums to one, marginal distributions, symplectic covariance,

except...

I ...it may take on negative values.
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When does the analogy hold perfectly?

Natural question: which states give rise to non-negative Wigner
distributions?

Theorem [Hudson, ’74]
The only pure states to possess a non-
negative Wigner functions are Gaussian
states.

ψ(x) ∝ e i(xθx+vx).



Common exchange at quantum optics conference
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Common exchange at quantum optics conference



The quantum information lense

Goals of this program:
I “De-mystify” negativity,

I build a proper q’info resource theory of negativity,

I and pass to discrete systems along the way.

(Bonus: Connections to learnability of low-rank operators)



The math of quantum phase
spaces.
(Bear with me).



CCR – Weyl – Heisenberg – characteristic function

I Canonical position / momentum operators:

[Q̂, P̂] = i~1.

That’s a Lie algebra. Exponentiate. . .

I . . . to get the Weyl operators:

w(p, q) ∝ e ipQ̂e iqP̂

for (p, q) ∈ R2.
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CCR – Weyl – Heisenberg – characteristic function

Weyl operators form a group (up to phases)

w(p1, q1)w(p2, q2) = w(p1 + p2, q1 + q2)

exp{πi(p1q2 − q1p2)}

Fun facts:

I The phase factor is symplectic inner product of parameters.

I The group is the Heisenberg group over R.

I It acts irreducibly on H = L2(R).
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CCR – Weyl – Heisenberg – characteristic function

Fix a density operator ρ.

Def. The characteristic function of ρ

χρ(p, q) = tr ρw(p, q)

maps phase-space points (p, q) to the expectation value of
associated Weyl operator.

Philosophical point:

I Classically, the char. function is the Fourier transform of the
probability density.

I So name makes sense if “expanding in Weyl terms of Weyl
ops” is some kind of FT. . .

I . . . but it is. E.g. it’s the non-commutative FT over the
Heisenberg group.
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Fix a density operator ρ.

Def. The characteristic function of ρ:
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Def. The Wigner function of ρ

Wρ(p, q) = F(p′,q′)→(p,q) χρ(p′, q′)

is the (usual 2D) FT of the characteris-
tic function.
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Let’s go discrete.



Dictionary 1
Continuous Discrete – d-dimensional

Configuration space Rn Zn
d = {0, . . . , d − 1}n

Arithmetic is modulo d

Hilbert space L2(Rn) Cd ' L2(Zn
d)

Phase space R2n Z2n
d

Weyl ops e ipQ̂e iqP̂ ??
w(p, q) p, q ∈ Rn



Weyl operators
Continuous:

w(p1, q1)w(p2, q2) = w(p1 + p2, q1 + q2)eπi(p1q2−q1p2)

Discrete – for odd d – and with ω = e2πi/d :

⇒ w(p1, q1)w(p2, q2) = w(p1 + p2, q1 + q2)ωp1q2−q1p2 .

Discrete Heisenberg group = generalized Paulis.
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Shared properties

Approach very satisfactory. Some shared properties:

I Normalization ∑
p,q

Wρ(p, q) = 1,

I Inner products

tr ρA =
∑
p,q

Wρ(p, q)WA(p, q)

. . . and also (next slides). . .

I symplectic covariance,
I positivity exactly for “Gaussians”,
I described by “displaced parity operators”.



Shared properties

Approach very satisfactory. Some shared properties:

I Normalization ∑
p,q

Wρ(p, q) = 1,

I Inner products

tr ρA =
∑
p,q

Wρ(p, q)WA(p, q)

. . . and also (next slides). . .

I symplectic covariance,
I positivity exactly for “Gaussians”,
I described by “displaced parity operators”.



Positivity

Recall continuous case:
Thm. [Hudson, ’74] If ρ = |ψ〉〈ψ|, then Wρ non-negative iff
ψ is a Gaussian state:

ψ(x) ∝ e i(xθx+vx) (x ∈ Rn).

My source of early pride:

Thm. (“Discrete Hudson”) [DG, ’06] If ρ = |ψ〉〈ψ|, then Wρ

non-negative iff ψ is a stabilizer state.
What is more, stabilizer states are those of the form

ψ(x) ∝ e i2π/d(xθx+vx) (x ∈ Zn
d)

(at least when restricted to their support).
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Symplectic Covariance

Let S be a symplectic phase space transformation. (I.e. det-1
matrix for one system).
Then there is a unitary U such that

WUρU†(p, q) = Wρ(S(p, q)).

Remarks:

I In quantum optics, these are the ops of linear optics
I In math-phys U is the metaplectic representation of S
I In q’info, these Us are the Clifford group
I The ops preserve positivity ⇒ map Gaussians to Gaussians

and stabs to stabs.
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Parity operators

For every p, q, the map ρ 7→Wρ(p, q) is linear in ρ, i.e. there is a
phase space point operator A(p, q) such that

Wρ(p, q) = tr ρA(p, q).

Short calculation:

A(p, q) = w(p, q)A(0, 0)w(p, q)†,

with
(A(0, 0)ψ

)
(x) = ψ(−x)

the parity operator.

In particular, the A(p, q)’s are unitary (and hermitian).
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Summary

Configuration space Rn Zn
d = {0, . . . , d − 1}n

Hilbert space L2(Rn) L2(Zn
d)

Phase space R2n Z2n
d

Weyl operators e i(pQ̂−qP̂) ẑ(p)x̂(q)

Characteristic function tr(ρw(p, q)) tr(ρw(p, q))

Wigner function FT of char. function FT of char. function
= exp. of disp. parity = exp. of disp. parity

Non-negative ψ(x) = e2πi(xθx+vx) ψ(x) = e
2π
d
i(xθx+vx)

Symmetries Sp(R2n) Sp(Z2n
d )



I Nice’ish. But looks like a kiddo-project ending up undercited
in J. Phys. A. Which grown-up problems does it solve?

A few:

I Shows that Spekken’s episdemic toy theory is actually
stabilizer QM represented as Wigner functions

I Lead to some simulability results for mixed many-body
dynamics [U Sydney, ongoing]

I Featured in construction of certain quantum expanders [DG,
Eisert ’07]

I But the real deal is. . .
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The Resource Theory of
Stabilizer Computation
[Veitch, Housavin, Gottesman, Emerson ’13
Some of the above + Ferrie, DG ’12]



Magic State Model
Recall that Clifford operations on stabilizer states

I Are efficiently simulable
I Cheap to implement fault-tolerantly.

I However, scheme becomes universal if augmented by
occassional injection of non-stab “magic states”.

Of interest

I Practically: Error-correction thresholds
I Conceptually: “What drives putative QC speedup?” – in part.

for mixed states?
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Which states qualify as magic resources?

I Call ρ muggle if it is the convex combination of stabs

I Otherwise, ρ is magic.



Resource Theory 1

Stabilizer comp entanglement

free operations Clifford LOCC

free states muggle separable

non-free states magic entangled

tractable approx. ??? pos. partial transp.
(tight for pure states)

bound states ??? PPT

quantitative meas. ??? log negativity



Re-Visit magic state circuit
Looking at computation in Wigner rep. . .

. . . it’s plain that

I Inputs are positively represented,
I Cliffords preserve that (symplectic covariance),
I Measurements are contractions with positive functions. . .

Hence. . .

I . . . entire scheme efficiently simulable unless resource states
introduce negativity!
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Negativity in mixed states
For mixed states: positive Wigner 6 muggle

I Continuous case [Brocker, Werner ’95]

I Discrete case [DG ’06]

But nicest argument by [Waterloo gang]:

Pos-Wig is simplicial outer approx. of muggle
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Resource Theory 2
Stabilizer comp entanglement

free operations Clifford LOCC

free states muggle separable

non-free states magic entangled

tractable approx. pos. Wigner pos. partial transp.
(tight for pure states) (tight for pure states)

bound states poswig PPT

distillable negwig? NPT?

quantitative meas. log negativity log negativity



Proof sketch of discrete
Hudson
. . . via phase-space uncertainty relations



Step 1: Parseval

Ingredient 1: Re-scaled A(p, q)’s are ONB matrix space:

tr
( 1√

d
A(p, q)

)( 1√
d
A(p′, q′)

)
= δp,p′δq,q′ .

Hence

‖ρ‖22 =
∑
i ,j

|ρi ,j |2

=
1

d

∑
p,q

|Wρ(p, q)|2

=

∥∥∥∥ 1√
d
Wρ

∥∥∥∥2
2

.

So ρ and 1√
d
Wρ =: W ′

ρ have “same energy”.
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Step 2: Uncertainty Relation
Ingredient 2: The energy can’t be highly localized in phase space.

I Assume ρ = |ψ〉〈ψ| pure ⇔ ‖ρ‖22 = 1,

I and use `1-norm as measure of
de-localization:

‖χ′ρ‖1 =
∑
p,q

|W ′
ρ(p, q)| ∈ [1, d ]

By matrix Hölder inequality,

|W ′
ρ(p, q)| ≤ 1√

d
‖A(p, q)‖∞ ‖ρ‖tr ≤

1√
d
,

which is tight iff |ψ〉 is an eigenvector of A(p, q).

I There must be at least d non-zero coefficients of Wρ,
I it follows that ‖W ′

ρ‖1 ≥
√
d ,

I . . . tight iff ψ an eigenvector of all A(p, q) in support of Wρ.
I Fact: This characterizes stabilizer states.
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Uncertainty Relation: Two facts to remember

Simple and general fact:

A low-rank matrix cannot have a sparse representation in a
matrix basis with small operator norm.
(Basis of work on compressed sensing for low-rank matrices).

Another fact about Wigner functions:

Minimal uncertainty states are exactly the stabilizers.
(Gaussians in continuous case).

Final step: Non-negativity implies minimal uncertainty

√
d =

∑
p,q

W ′
ρ(p, q) =

∑
p,q

|W ′
ρ(p, q)| = ‖W ′

ρ‖1 = min .

and we are done.
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√
d =

∑
p,q

W ′
ρ(p, q) =

∑
p,q

|W ′
ρ(p, q)| = ‖W ′

ρ‖1 = min .

and we are done.
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Outlook

Message: uncertaintly relations more fundamental than positivity.

Strong versions can be be proved for characteristic function:

‖χ′ρ‖1 ≥ tr ρ2

with equality if ρ is a stablizer code.

Advantages:

I Non-trivial also for mixed states,

I works for qubits, too.

Q: Measures of magic based on char. function uncertainties?
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Thanks for your attention.


