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QECC


[n,k,d] code: encode k logical qubits in n physical���

qubits and correct errors on <d/2 positions.



[n,k,d,w]: ...using a decoding procedure that ���
requires measurements of ≤w qubits at a time.



w=O(1) “LDPC” (low-density parity check)���
Classically, possible with k, d = Ω(n).



WWSD principle à qLDPC
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main results



Main Theorem: Given an [n,k,d] stabilizer code with 
stabilizer weights w1, ..., wn-k, we can construct an ���

[n’, k, d, w’=O(1)] subsystem code with n’ = O(n + ∑i wi).



More general theorem: Given an [n,k,d] stabilizer code 
with a size-S Fault-Tolerant Error-Detecting Circuit we 
can construct an [n’=O(S), k, d, w’=O(1)] subsystem code.



Also needed: New F-T E-D 
circuit for measuring a 

weight-w stabilizer using 
O(w) gates.



Subsystem codes exist with ���
k=1, w=O(1),

 d ⇠ n1� cp

log n



stabilizer codes


•  S = subgroup of ±{I, X, XZ, Z}n


•  codespace V = {|ψ⟩ : s|ψ⟩=|ψ⟩ for all s∈S}


•  Paulis anticommuting with some s∈S are detected


•  logical operators commute with all of S



3-bit repetition code


 S = <ZZI, IZZ> = <I⊗Z⊗Z, Z⊗Z⊗I>



V = span{|000>, |111>}


logical operators <XXX, ZII>
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4-qubit code, distance 2





subsystem/gauge codes


•  Replace some logical qubits with “gauge” qubits:


–  Like logical qubits: Commute with stabilizers and 

errors. Contents can be arbitrary for logical code 
states.



–  Like stabilizer qubits: Don’t care about preserving.���
Can (and should) measure during decoding.



•  Advantages: sparsity, simpler decoding, ���
(sometimes) better thresholds



4-qubit code, distance 2


stabilizer generators. logical qubit. gauge qubit.
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structure of subsystem codes


Gauge group G ≤ ±{I, X, XZ, Z}n.



Center is stabilizer group: S ≅ Z(G)/{±1}


Normalizer is logical group: L ≅ N(G)/S



4-qubit code
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From Codes to Circuits to Codes Again…



  Begin with a stabilizer 
code of your choice



  Write a quantum circuit 
for measuring the 
stabilizers of this code.
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From Codes to Circuits to Codes Again…



  Begin with a stabilizer 
code of your choice



  Write a quantum circuit 
for measuring the 
stabilizers of this code.



  Turn the circuit 
elements into input/
output qubits 



  Add gauge generators 
via Pauli circuit identities



  This defines the code



Bravyi 2011 does something similar with “generalized Bacon-Shor” codes 




Properties of this Construction



  Circuits as linear 
operators preserving 
the code space



V is an error-detecting 
circuit


General condition:


V is E-D iff 





Properties of this Construction



  Circuits as linear 
operators preserving 
the code space



  Gauge equivalence of 
errors: 



E


Apply gauge operators…





Properties of this Construction



  Circuits as linear 
operators preserving 
the code space



  Gauge equivalence of 
errors: 



  Squeegee lemma: using 
gauge operations, we 
can localize errors to 
the initial data qubits





Stabilizer and Logical Operators



  Spackling: like squeegee, 
but you leave a residue



  Spackling of logical 
operators gives the new 
logical operators



  Spackling of stabilizers on 
the inputs and ancillas are 
the new stabilizers



  Everything else is gauge 
or detectable error 



  …what about distance?


*even/odd effect means that


circuits wires must have odd length





Code Distance and Fault Tolerance



  For most error-detecting circuits, the new code is 
uninteresting (i.e. has bad distance).



  Theorem: If we use a fault-tolerant circuit then we 
preserve the code distance



  Fault tolerance definition: for every error pattern E, 
either VE = 0 or there exists E’ on inputs s.t. V E’=VE 
and |E’ |≤|E|.



  Idiosyncratic constraints:


  Circuit must be Clifford (so no majority vote)


  No classical feedback or post-processing allowed


  However, we only need to detect errors





Fault-Tolerant Gadgets



  Use modified Shor/
DiVincenzo cat states


  Build a cat, and 
postselect …not fault 
tolerant



  Redeem this idea by 
coupling to expanders 



  constant-degree 
expanders exist with 
sufficient edge 
expansion to make this 
fault tolerant
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expander gadgets


data	
  qubits	
  ≅	
  {1,	
  ...,	
  n}	
  

cat	
  qubits	
  ≅	
  V,	
  |V|=n	
  

ancilla	
  qubits	
  ≅	
  E	
  

•  Recipe:	
  mul;ple-­‐CNOT	
  from	
  each	
  v	
  to	
  
corresponding	
  data	
  qubit	
  and	
  all	
  incident	
  edges.	
  

•  Requirement:	
  Edge	
  expansion	
  ≥	
  1	
  means	
  X	
  errors	
  
on	
  cat	
  qubits	
  cause	
  more	
  errors	
  on	
  ancillas.	
  

•  Corresponds	
  to	
  classical	
  ECC	
  with	
  “energy	
  barrier”.	
  



Wake Up!



  Created sparse subsystem codes with the same k and d 
parameters as the base code



  Used fault-tolerant circuits in a new way, via expanders


  Extra ancillas are required according to the circuit size





Almost “Good” Sparse Subsystem Codes



  Start with an [n0,1,d0] random stabilizer code ���
(so that d0=O(n0) with high probability)



  Concatenate this m times to get an [n0
m,1,d0

m] code


  Stabilizers: n0

j of weight ≤n0
m-j+1.���

Total weight m∙n0
m+1



  Apply Theorem 1 with m = (log n)1/2



Sparse subsystem codes exist with ���
d = O(n1-ε) and ε = O(1/√log n).



____



Best previous distance for sparse codes was  
d = O(√n log n ) by Freedman, Meyer, Luo 2002


______

*Thank you 

 Sergei Bravyi!




Spatially Local Subsystem Codes Without Strings



  Take the circuit construction from the previous 
result



  Using SWAP gates and wires, spread the circuit over 
the vertices of a cubic lattice in D dimensions



  Let n=LD be the total number of qubits���
���
���
���




Local subsystem codes exist with ���
d = O(LD-1-ε) and ε = O(1/√log n).



____





Compared to Known Bounds



  Local subsystem codes in D dimensions ���
     d ≤ O(LD-1)



  Our code: d=Ω(LD-1-ε)


  Best known local stabilizer codes: d=O(LD/2)���




  Local commuting projector codes ���
    kd2/(D-1)≤O(n)



  Our codes: kd2/(D-1)=Ω(n) ���
(use the hypergraph product codes and our main theorem)



*ε = O((log n)-1/2)

 Tillich & Zémor 2009
Bravyi, Poulin, Terhal 2010;
Bravyi & Terhal 2009;




Conclusion & Open Questions


  Showed a generic way to turn stabilizer codes into 
sparse subsystem codes



  New connection between quantum error correction & 
fault-tolerant quantum circuits



  What are the limits for sparse stabilizer codes?


  Self-correcting memory from the gauge Hamiltonian?


  Efficient, fault-tolerant decoding for these codes?


  Improve the rate? (Bravyi & Hastings 2013)


  Extend these results to allow for subsystem codes?


  Holography? ???


  See arxiv:1411.3334 for more details!





The Best Sparse Codes



Code
 k
 d
 Subsystem?
 Decoder?


Z2-systolic codes

(Freedman, Meyer, Luo 2002)
 O(1)
 O(√n log n)


4D Hyperbolic 
(Hastings 2013)
 O(n)
 O(log n)


4D Arithmetic Hyperbolic 
(Guth & Lubotzky 2013)
 O(n)
 O(n0.3)


Hypergraph Product

(Tillich & Zémor 2009)
 O(n)
 O(n0.5)


BFHS 2014 (this talk)*
 O(1)
 O(n1-ε)
 yes


Homological Product† 
(Bravyi & Hastings 2013)
 O(n)
 O(n)


*subsystem code, ε = O(1/√log n); ���
†sparsity s = O(√n);                      .





The Best (Euclidean) Local Codes



Code
 D
 k
 d
 Subsystem?
 Decoder?


Toric Code (Kitaev 1996)
 ≥2
 O(1)
 O(√n)


Generalized Bacon-Shor 
(Bravyi 2011)
 2
 O(L)
 O(L)
 yes


Welded Code 
(Michnicki 2012)
 3
 1
 O(L4/3)


Embedded Fractal 
(Brell 2014)
 3’ish
 O(n)
 O(n0.5)


Gauge Color Codes 
(Bombin 2013)
 3
 O(n)
 O(n)
 yes


Gauge Color Codes 
(Bombin 2013)
 3
 O(n)
 O(n)
 yes


BFHS 2014 (this talk)*
 ≥2
 O(1)
 O(LD-1-ε)
 yes


*subsystem code, ε = O(1/√log n); ���
†sparsity s = O(√n);                      .



n=LD	
  



Local Subsystem Codes Without Strings



  Specialize to D=3


  Sparse subsystem code on a lattice with [L3,O(1),L2-ε] 


  No strings, either for bare or dressed logical 
operators



  cf. Bombin’s gauge color codes


  …on the other hand it’s a subsystem code


  How does this compare to other candidate self-
correcting quantum memories?���
���
���






Comparing Candidate Self-Correcting 
Memories



Code
 Self-correcting?
 Comments


3D Bacon-Shor

(Bacon 2005)
 no
 No threshold, so no self-

correction (Pastawski et al. 2009)


Welded Code

(Michnicki 2014)
 no
 See Brown et al. 2014  

review article for discussion


Cubic Code

(Haah 2011)
 marginal
 poly(L) memory lifetime for L< eβ/3


(Bravyi & Haah 2013)


Embedded Fractal Product Codes

(Brell 2014)
 maybe
 very large ground-state 

degeneracy?


Gauge Color Codes

(Bombin 2013)
 ???
 Does have a threshold, also has 

string-like dressed operators


This talk 
(BFHS 2014)
 ???
 No strings, concatenated codes 

have a threshold 


Not depicted: Codes with long-range couplings (e.g. several works by the Loss group) or Hamma et al. 2009


See the talk by Olivier Landon-Cardinal on Friday for more discussion of these types of codes.





Challenges with Gauge Hamiltonians



  Gauge Hamiltonians are sometimes gapped: ���
(Kitaev 2005; Brell et al. 2011; Bravyi et al. 2013)



  …but sometimes not: ���
(Bacon 2005; Dorier, Becca, & Mila 2005)



  The simplest example of our code (a wire) reduces to 
Kitaev’s quantum wire, which is gapped as long as the 
couplings aren’t equal in magnitude



  Our codes are a vast generalization of Kitaev’s wire to 
arbitrary circuits!



  This undoubtedly has a rich phase diagram… might 
there be a gapped self-correcting phase, or 
something more?



Kitaev 2001;   Lieb, Schultz, & Mattis 1961



