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Motivation

e Construct novel (better ?) QECC

* Help high energy theorists understand appreciate
guantum information.

* Help me quantum information theorist understand
high energy theory.
e Solve fundamental open problems in physics.
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Ryu-Takayanagi
Holographic Derivation of Entanglement Entropy from AdS/CFT (2006)

Distance = entanglement entropy
MERA AdS metric
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Class of Quantum Many-Body States That Can Entanglement renormalization and holography
Be Efficiently Simulated Guifre Vidal (2008) Brian Swingle (2012)
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Entanglement entropy (1964) Quantum Error Correcting Codes (1995)



AdS-Rindler reconstruction

lim r2¢(r, 2) = O(z)
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Multiple AdS-Rindler reconstructions on CFT



AdS-Rindler reconstruction

Ads/CFT

Bulk operators Logical operators
CFT operator(s) Physical operator(s)
AdS-Rindler reconstruction  Cleaning lemma

AdS -> CFT )y — 15,1, 3]|(|¥))
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Holographic QECC

ney have a MERA like structure
ney can realize stabilizer QECC

ey respect bulk locality for physical
representations of logical operators.

Generalize concatenated codes.
Simple interpretation of cleaning.

They allow for flexibility in the
— Lattice realization (shape + curvature)
— Arrangement of logical inputs.
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Stabilizer codes = stabilizer states
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Maximally entangled = Unitary

* [[n,0,d]] means any (d-1) shares are maximally
entangled with the rest.

* [[2n,0,n+1]] means maximally entangled along
any balanced bipartition!
* Always proportional to a k particle unitary!
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Not that special

* Canonical typicality:

Average entanglement for high dimensional
states is close to maximal.

Most states represent tensors which are
approximately like a unitary.

Stabilizer states provide exact realization in low
dimension.



The mixer




Holographic QECC






Holographic QECC
(Pauli pushing)
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We can always do this!

Hyperbolic lattice
=>
More out than in.



Erasure recovery




Greedy geodesic algorithm

Data: A = Boundary region

Result: g4 = Greedy geodesic of A

Result: R4 = Region between A and g4

ga = A;

RA .= @ )

while 37 : T'¢ R4 and |0T Nga| > |0T|/2 do
ga = ga ® 0T

Rpa=RAUTH

end

return g4




Erasure recovery




Code property checklist

* Does the central qubit have a threshold?
e Code distance = ( 3 for suburban logicals)

Central tensor recovery of (2,5,5) lattice ,
0.9
0.8
—o.7
0.6

probability

Central tensor recovery




Weight 4 logical ops.
affecting downtown logicals




Digression to
Kaleidotile

(on drawing more than 6 polygons on a hyperbolic lattice)



Make the code Iess dense
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Pentagons and hexagons (4 polygons per vertex)



Code property checklist

* Erasure threshold with a n.n. correlated noise.
 Numerical erasure threshold for greedy recovery.

Central tensor recovery of (2,5,6) lattice
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Arbitrarily hlgh erasure threshold?
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Almost optimal threshold

 Numerical greedy recovery threshold ~0.52.
e Actual threshold of 0.5?

Central tensor recovery on (2,6,6) lattice

probability

Central tensor recovery




The concatenated code limit

Vertex coordination
number > Radius




How general can we be?

[[ 6/ O/ 4 ]]2 -2 [[ 2k) 0) k+1]]X
Exists for any k if x > O(k/2)

Arbitrary lattice.

Any negative curvature?
Limit the rumber density of bulk legs.



What is the right vacuum?



Holographic state

No bqu/IQgicaI legs.

What is the normalization? -

4
s
T,

Ryu-Takayanagi -> Entanglement entropy = length of bulk geodesics.

A
Does it satisfy

Ryu-Takayanagi?
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Circuit interpretation

2N\
5 /7 -

J6
Flux: #incoming = #Outgoing - \_/

0
DAG: Directed acyclic graph | .. | l
No time-like curves

2
Vi)

y 3

No local (bulk) maxima for distance

Non-positive curvature

Positive Curvature Negative Curvature Flat Curvature



Is it normalized state?

Does it satisfy
Ryu-Takayanagi? Exactly! Y

T=U=U,Up
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Holographic state

No bulk/logical legs.
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Geodesic



Geodesics and the greedy algorithm

Greedy geodesics region R, for A contains all simple geodesics.

Proof: For holographic states, just follow the arrows.

TAVAVA VAVAY
JAVAVAVAVAVA
VAVAVAVAYA.

VAVAVAYAV,

2



Greedy geodesics recede with cuts

Greedy geodesics recede with cuts.

Proof: RAHRAHRL:@




Holographic code: has bulk/logical legs.

Is the encoder normalized? 1

If we can build a DAG-Flux

with all bulk as input. 1T =U

Iff greedy algorithm succeeds.

| Boundary | =2k+l | Bulk | =l
Bulk = — —
I
— ~Boundary
Boundary- k+l
k




When does the greedy algorithm fail?



Finding multiregion minimal geodesic

Greedy algorithm Optimal algorithm
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Black holes and Bekenstem Hawking
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Ryu-Takayanagi Corrections

Minimal curve length = 8 Entanglement entropy =6







Local curvature in discrete lattices

Positive Curvature Negative Curvature Flat Curvature

For triangles

cdV =¢1 + Qs+ 3 —

For general polygons.

N
ch:Z¢j—(N—2)7T
j=1



No interior maxima from
No contractible bubble

* Conjecture 1: If there is no convex region in
the manifold with curvature greater than Pi,
there will be no interior maxima to the

distance function.




No contractible bubble

* Conjecture 2: If there there is a convex region
in the manifold with discrete curvature >= Pi
we may apply exact TNR.




Length scales

lPlanck < lCoarse grain < RAdS



Conclusions

 |llustrated power of perfect tensors
— For constructing QECC

— For providing exact connection of entanglement and
geometry

* Constructed a family of holographic QECC
— With holographic properties

— Showed the possibility of a threshold

* Constructed holographic “vacuum” states
— Proved exact Ryu-Takayanagi entanglement entropy



Open problems \

Analyze and optimize code parameters.  sSas ’g’-‘*
Error decoding algorithms!!
Non-positive curvature from TNR
ldentifying bulk/boundary dynamics
Emergence of frame independence from perfect tensors.
Continuum limit in bond dimension CSS

Lattice continuum limit

Bounding of RT corrections

RT proof generalization to higher D.

GUT = Grand unifying tensor ©



Regular flat lattices

. <
Triangular tiling

Square tiling

63
Hexagonal tiling



Flat angles

T 9099 ¢

3.7.42 3.8.24 3.9.18 3.10.15 3.12.12

25724

4.5.20 4.6.12 4.8.8 5.5.10 6.6.6

Fourvalent ’ ’ ' '

3.3.4.12 3.4.3.12 3.3.6.6 3.6.3.6 4444

Five valent

3.44.6 3.4.6.4

3.3.3.3.6 33344 3.3.4.3.4



Small curvature hyperbolic tessellations

Small curvature regular lattices

vicsr c Smallest per vertex curvature (non-extensible)

f
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416|27/3|m Smallest per vertex curvature (even) extensible
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Leapfrog fullerene




Perfect tensors and relativity

* GRelativity is reference frame independent

e Evolution should be unitary along different
timelike directions.

e Perfect tensors may provide the right way to
discretize evolution in spacetime.



Thank You!



